Rozložiť na faktory
3\left(x+5\right)^{2}
Vyhodnotiť
3\left(x+5\right)^{2}
Graf
Zdieľať
Skopírované do schránky
3\left(x^{2}+10x+25\right)
Vyčleňte 3.
\left(x+5\right)^{2}
Zvážte x^{2}+10x+25. Použite dokonalý vzorec, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, kde a=x a b=5.
3\left(x+5\right)^{2}
Prepíšte kompletný výraz rozložený na faktory.
factor(3x^{2}+30x+75)
Tento trojčlen má tvar mocniny trojčlena, ktorý je možno vynásobený spoločným činiteľom. Mocniny trojčlena možno rozložiť nájdením druhých odmocnín člena s najvyšším a člena s najnižším mocniteľom.
gcf(3,30,75)=3
Nájdite najväčšieho spoločného deliteľa koeficientov.
3\left(x^{2}+10x+25\right)
Vyčleňte 3.
\sqrt{25}=5
Nájdite druhú odmocninu člena s najnižším mocniteľom 25.
3\left(x+5\right)^{2}
Druhá mocnina trojčlena je druhá mocnina dvojčlena, ktorý je súčtom alebo rozdielom druhých odmocnín prvého a posledného člena, pričom znamienko sa určuje podľa znamienka stredného člena druhej mocniny trojčlena.
3x^{2}+30x+75=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\times 3\times 75}}{2\times 3}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-30±\sqrt{900-4\times 3\times 75}}{2\times 3}
Umocnite číslo 30.
x=\frac{-30±\sqrt{900-12\times 75}}{2\times 3}
Vynásobte číslo -4 číslom 3.
x=\frac{-30±\sqrt{900-900}}{2\times 3}
Vynásobte číslo -12 číslom 75.
x=\frac{-30±\sqrt{0}}{2\times 3}
Prirátajte 900 ku -900.
x=\frac{-30±0}{2\times 3}
Vypočítajte druhú odmocninu čísla 0.
x=\frac{-30±0}{6}
Vynásobte číslo 2 číslom 3.
3x^{2}+30x+75=3\left(x-\left(-5\right)\right)\left(x-\left(-5\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte -5 a za x_{2} dosaďte -5.
3x^{2}+30x+75=3\left(x+5\right)\left(x+5\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}