Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozložiť na faktory
Tick mark Image

Zdieľať

3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Ak chcete umocniť \frac{7+2\sqrt{10}}{3}, umocnite čitateľa a menovateľa a potom ich vydeľte.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Vyjadriť 3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} vo formáte jediného zlomku.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Vykráťte 3 v čitateľovi aj v menovateľovi.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Vyjadriť 4\times \frac{7+2\sqrt{10}}{3} vo formáte jediného zlomku.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Vynásobiť číslo \frac{4\left(7+2\sqrt{10}\right)}{3} číslom \frac{7-2\sqrt{10}}{3} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 3 a 3\times 3 je 3\times 3. Vynásobte číslo \frac{\left(2\sqrt{10}+7\right)^{2}}{3} číslom \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Keďže \frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} a \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Ak chcete umocniť \frac{7-2\sqrt{10}}{3}, umocnite čitateľa a menovateľa a potom ich vydeľte.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Vyjadriť 3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} vo formáte jediného zlomku.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
Vykráťte 3 v čitateľovi aj v menovateľovi.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
Na rozloženie výrazu \left(-2\sqrt{10}+7\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
Druhá mocnina \sqrt{10} je 10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
Vynásobením 4 a 10 získate 40.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Sčítaním 40 a 49 získate 89.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 3\times 3 a 3 je 3\times 3. Vynásobte číslo \frac{89-28\sqrt{10}}{3} číslom \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
Keďže \frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} a \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Na rozloženie výrazu \left(2\sqrt{10}+7\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Druhá mocnina \sqrt{10} je 10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Vynásobením 4 a 10 získate 40.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Sčítaním 40 a 49 získate 89.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
Vynásobením 3 a 3 získate 9.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 9 a 3 je 9. Vynásobte číslo \frac{89-28\sqrt{10}}{3} číslom \frac{3}{3}.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
Keďže \frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} a \frac{3\left(89-28\sqrt{10}\right)}{9} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
Vynásobiť vo výraze 3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right).
\frac{36+168\sqrt{10}}{9}
Vo výraze 267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10} urobte výpočty.