Riešenie pre x
x=4
x=-6
Graf
Zdieľať
Skopírované do schránky
\left(x+1\right)^{2}=\frac{75}{3}
Vydeľte obe strany hodnotou 3.
\left(x+1\right)^{2}=25
Vydeľte číslo 75 číslom 3 a dostanete 25.
x^{2}+2x+1=25
Na rozloženie výrazu \left(x+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
Odčítajte 25 z oboch strán.
x^{2}+2x-24=0
Odčítajte 25 z 1 a dostanete -24.
a+b=2 ab=-24
Ak chcete vyriešiť rovnicu, faktor x^{2}+2x-24 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,24 -2,12 -3,8 -4,6
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Vypočítajte súčet pre každý pár.
a=-4 b=6
Riešenie je pár, ktorá poskytuje 2 súčtu.
\left(x-4\right)\left(x+6\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=4 x=-6
Ak chcete nájsť riešenia rovníc, vyriešte x-4=0 a x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
Vydeľte obe strany hodnotou 3.
\left(x+1\right)^{2}=25
Vydeľte číslo 75 číslom 3 a dostanete 25.
x^{2}+2x+1=25
Na rozloženie výrazu \left(x+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
Odčítajte 25 z oboch strán.
x^{2}+2x-24=0
Odčítajte 25 z 1 a dostanete -24.
a+b=2 ab=1\left(-24\right)=-24
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx-24. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,24 -2,12 -3,8 -4,6
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Vypočítajte súčet pre každý pár.
a=-4 b=6
Riešenie je pár, ktorá poskytuje 2 súčtu.
\left(x^{2}-4x\right)+\left(6x-24\right)
Zapíšte x^{2}+2x-24 ako výraz \left(x^{2}-4x\right)+\left(6x-24\right).
x\left(x-4\right)+6\left(x-4\right)
x na prvej skupine a 6 v druhá skupina.
\left(x-4\right)\left(x+6\right)
Vyberte spoločný člen x-4 pred zátvorku pomocou distributívneho zákona.
x=4 x=-6
Ak chcete nájsť riešenia rovníc, vyriešte x-4=0 a x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
Vydeľte obe strany hodnotou 3.
\left(x+1\right)^{2}=25
Vydeľte číslo 75 číslom 3 a dostanete 25.
x^{2}+2x+1=25
Na rozloženie výrazu \left(x+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
Odčítajte 25 z oboch strán.
x^{2}+2x-24=0
Odčítajte 25 z 1 a dostanete -24.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 2 za b a -24 za c.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
Umocnite číslo 2.
x=\frac{-2±\sqrt{4+96}}{2}
Vynásobte číslo -4 číslom -24.
x=\frac{-2±\sqrt{100}}{2}
Prirátajte 4 ku 96.
x=\frac{-2±10}{2}
Vypočítajte druhú odmocninu čísla 100.
x=\frac{8}{2}
Vyriešte rovnicu x=\frac{-2±10}{2}, keď ± je plus. Prirátajte -2 ku 10.
x=4
Vydeľte číslo 8 číslom 2.
x=-\frac{12}{2}
Vyriešte rovnicu x=\frac{-2±10}{2}, keď ± je mínus. Odčítajte číslo 10 od čísla -2.
x=-6
Vydeľte číslo -12 číslom 2.
x=4 x=-6
Teraz je rovnica vyriešená.
\left(x+1\right)^{2}=\frac{75}{3}
Vydeľte obe strany hodnotou 3.
\left(x+1\right)^{2}=25
Vydeľte číslo 75 číslom 3 a dostanete 25.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+1=5 x+1=-5
Zjednodušte.
x=4 x=-6
Odčítajte hodnotu 1 od oboch strán rovnice.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}