Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Zdieľať

2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobte obe strany rovnice premennou 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 2x číslom 100 a dostanete \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 25 získate 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 50000 a 20 získate 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 1000000 a 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 1000000 a \frac{1}{50} získate \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 1000000 číslom 50 a dostanete 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 1000000+20000x každým členom výrazu 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 6x číslom 100 a dostanete \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 500 a 4 získate 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 20 získate 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 40000 a 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 40000\times \frac{3}{50} vo formáte jediného zlomku.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 40000 a 3 získate 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 120000 číslom 50 a dostanete 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 40000+2400x každým členom výrazu 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Sčítaním 1000000 a 40000 získate 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Skombinovaním 20000x a 2400x získate 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 2x číslom 100 a dostanete \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 20 a 25 získate 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 500 a 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 500 a \frac{1}{50} získate \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 500 číslom 50 a dostanete 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 6x číslom 100 a dostanete \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 5 a 4 získate 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 20 a 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 20\times \frac{3}{50} vo formáte jediného zlomku.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 20 a 3 získate 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vykráťte zlomok \frac{60}{50} na základný tvar extrakciou a elimináciou 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Sčítaním 500 a 20 získate 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Skombinovaním 10x a \frac{6}{5}x získate \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 100 a 20 získate 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 2000 a 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 2000\times \frac{56}{5} vo formáte jediného zlomku.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 56 získate 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 112000 číslom 5 a dostanete 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 1040000+22400x každým členom výrazu 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 1040000 z oboch strán.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 1040000 z 1040000 a dostanete 0.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 1040000\left(-\frac{\frac{5x}{18}}{100}\right) z oboch strán.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 22400x z oboch strán.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Odčítajte 22400x\left(-\frac{\frac{5x}{18}}{100}\right) z oboch strán.
100\left(1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Vynásobte obe strany rovnice premennou 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=0
Zmeňte poradie členov.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 40000 a -1 získate -40000. Vynásobením 1000000 a -1 získate -1000000. Vynásobením -1 a 1040000 získate -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 2400 a -1 získate -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 4 a 100 získate 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vykrátiť najväčšieho spoločného deliteľa 400 v 2400 a 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 20000 a -1 získate -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 10 a 100 získate 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vykrátiť najväčšieho spoločného deliteľa 1000 v 20000 a 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 4 a 100 získate 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vykrátiť najväčšieho spoločného deliteľa 400 v 40000 a 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 10 a 100 získate 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vykrátiť najväčšieho spoločného deliteľa 1000 v 1000000 a 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Skombinovaním -100x a 22400x získate 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením -1040000 a -1 získate 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vykráťte 5 v čitateľovi aj v menovateľovi.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 18 a 20 získate 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vyjadriť 1040000\times \frac{x}{360} vo formáte jediného zlomku.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Skombinovaním 22300x a -22400x získate -100x.
100\left(-6xx-60xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením -20 a 3 získate -60. Vynásobením -1000 a 3 získate -3000.
100\left(-66xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Skombinovaním -6xx a -60xx získate -66xx.
100\left(-66xx-3100x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Skombinovaním -100x a -3000x získate -3100x.
-6600x^{2}-310000x+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Použite distributívny zákon na vynásobenie 100 a -66xx-3100x+\frac{1040000x}{360}.
-6600x^{2}-310000x+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vydeľte číslo 1040000x číslom 360 a dostanete \frac{26000}{9}x.
-6600x^{2}-310000x+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vyjadriť 100\times \frac{26000}{9} vo formáte jediného zlomku.
-6600x^{2}-310000x+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Vynásobením 100 a 26000 získate 2600000.
-6600x^{2}-\frac{190000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Skombinovaním -310000x a \frac{2600000}{9}x získate -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{5x}{18\times 100}=0
Vynásobením -2240000 a -1 získate 2240000.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{18\times 20}=0
Vykráťte 5 v čitateľovi aj v menovateľovi.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{360}=0
Vynásobením 18 a 20 získate 360.
-6600x^{2}-\frac{190000}{9}x+\frac{2240000x}{360}x=0
Vyjadriť 2240000\times \frac{x}{360} vo formáte jediného zlomku.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}xx=0
Vydeľte číslo 2240000x číslom 360 a dostanete \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}x^{2}=0
Vynásobením x a x získate x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Skombinovaním -6600x^{2} a \frac{56000}{9}x^{2} získate -\frac{3400}{9}x^{2}.
x=\frac{-\left(-\frac{190000}{9}\right)±\sqrt{\left(-\frac{190000}{9}\right)^{2}}}{2\left(-\frac{3400}{9}\right)}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte -\frac{3400}{9} za a, -\frac{190000}{9} za b a 0 za c.
x=\frac{-\left(-\frac{190000}{9}\right)±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Vypočítajte druhú odmocninu čísla \left(-\frac{190000}{9}\right)^{2}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Opak čísla -\frac{190000}{9} je \frac{190000}{9}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}
Vynásobte číslo 2 číslom -\frac{3400}{9}.
x=\frac{\frac{380000}{9}}{-\frac{6800}{9}}
Vyriešte rovnicu x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}, keď ± je plus. Prirátajte \frac{190000}{9} ku \frac{190000}{9} zistením spoločného menovateľa a sčítaním čitateľov. Potom vykráťte zlomok na jeho základný tvar, ak je to možné.
x=-\frac{950}{17}
Vydeľte číslo \frac{380000}{9} zlomkom -\frac{6800}{9} tak, že číslo \frac{380000}{9} vynásobíte prevrátenou hodnotou zlomku -\frac{6800}{9}.
x=\frac{0}{-\frac{6800}{9}}
Vyriešte rovnicu x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}, keď ± je mínus. Odčítajte zlomok \frac{190000}{9} od zlomku \frac{190000}{9} tak, že nájdete spoločného menovateľa a odčítate čitateľov. Ak je to možné, zlomok potom čo najviac vykráťte.
x=0
Vydeľte číslo 0 zlomkom -\frac{6800}{9} tak, že číslo 0 vynásobíte prevrátenou hodnotou zlomku -\frac{6800}{9}.
x=-\frac{950}{17} x=0
Teraz je rovnica vyriešená.
2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobte obe strany rovnice premennou 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 2x číslom 100 a dostanete \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 25 získate 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 50000 a 20 získate 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 1000000 a 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 1000000 a \frac{1}{50} získate \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 1000000 číslom 50 a dostanete 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 1000000+20000x každým členom výrazu 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 6x číslom 100 a dostanete \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 500 a 4 získate 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 20 získate 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 40000 a 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 40000\times \frac{3}{50} vo formáte jediného zlomku.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 40000 a 3 získate 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 120000 číslom 50 a dostanete 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 40000+2400x každým členom výrazu 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Sčítaním 1000000 a 40000 získate 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Skombinovaním 20000x a 2400x získate 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 2x číslom 100 a dostanete \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 20 a 25 získate 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 500 a 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 500 a \frac{1}{50} získate \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 500 číslom 50 a dostanete 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 6x číslom 100 a dostanete \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 5 a 4 získate 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 20 a 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 20\times \frac{3}{50} vo formáte jediného zlomku.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 20 a 3 získate 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Vykráťte zlomok \frac{60}{50} na základný tvar extrakciou a elimináciou 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Sčítaním 500 a 20 získate 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Skombinovaním 10x a \frac{6}{5}x získate \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 100 a 20 získate 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon na vynásobenie 2000 a 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vyjadriť 2000\times \frac{56}{5} vo formáte jediného zlomku.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vynásobením 2000 a 56 získate 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Vydeľte číslo 112000 číslom 5 a dostanete 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Použite distributívny zákon a vynásobte každý člen výrazu 1040000+22400x každým členom výrazu 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=1040000+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 1040000\left(-\frac{\frac{5x}{18}}{100}\right) z oboch strán.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=1040000+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Odčítajte 22400x z oboch strán.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=1040000
Odčítajte 22400x\left(-\frac{\frac{5x}{18}}{100}\right) z oboch strán.
100\left(1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=104000000
Vynásobte obe strany rovnice premennou 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x+1040000-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=104000000
Zmeňte poradie členov.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 40000 a -1 získate -40000. Vynásobením 1000000 a -1 získate -1000000. Vynásobením -1 a 1040000 získate -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 2400 a -1 získate -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 4 a 100 získate 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vykrátiť najväčšieho spoločného deliteľa 400 v 2400 a 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 20000 a -1 získate -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 10 a 100 získate 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vykrátiť najväčšieho spoločného deliteľa 1000 v 20000 a 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 4 a 100 získate 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vykrátiť najväčšieho spoločného deliteľa 400 v 40000 a 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 10 a 100 získate 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vykrátiť najväčšieho spoločného deliteľa 1000 v 1000000 a 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Skombinovaním -100x a 22400x získate 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením -1040000 a -1 získate 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vykráťte 5 v čitateľovi aj v menovateľovi.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 18 a 20 získate 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vyjadriť 1040000\times \frac{x}{360} vo formáte jediného zlomku.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Skombinovaním 22300x a -22400x získate -100x.
100\left(-6xx-60xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením -20 a 3 získate -60. Vynásobením -1000 a 3 získate -3000.
100\left(-66xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Skombinovaním -6xx a -60xx získate -66xx.
100\left(-66xx-3100x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Skombinovaním -100x a -3000x získate -3100x.
-6600x^{2}-310000x+104000000+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Použite distributívny zákon na vynásobenie 100 a -66xx-3100x+1040000+\frac{1040000x}{360}.
-6600x^{2}-310000x+104000000+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vydeľte číslo 1040000x číslom 360 a dostanete \frac{26000}{9}x.
-6600x^{2}-310000x+104000000+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vyjadriť 100\times \frac{26000}{9} vo formáte jediného zlomku.
-6600x^{2}-310000x+104000000+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Vynásobením 100 a 26000 získate 2600000.
-6600x^{2}-\frac{190000}{9}x+104000000-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Skombinovaním -310000x a \frac{2600000}{9}x získate -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{5x}{18\times 100}=104000000
Vynásobením -2240000 a -1 získate 2240000.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{18\times 20}=104000000
Vykráťte 5 v čitateľovi aj v menovateľovi.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{360}=104000000
Vynásobením 18 a 20 získate 360.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{2240000x}{360}x=104000000
Vyjadriť 2240000\times \frac{x}{360} vo formáte jediného zlomku.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}xx=104000000
Vydeľte číslo 2240000x číslom 360 a dostanete \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}x^{2}=104000000
Vynásobením x a x získate x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x+104000000=104000000
Skombinovaním -6600x^{2} a \frac{56000}{9}x^{2} získate -\frac{3400}{9}x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=104000000-104000000
Odčítajte 104000000 z oboch strán.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Odčítajte 104000000 z 104000000 a dostanete 0.
\frac{-\frac{3400}{9}x^{2}-\frac{190000}{9}x}{-\frac{3400}{9}}=\frac{0}{-\frac{3400}{9}}
Vydeľte obe strany rovnice hodnotou -\frac{3400}{9}, čo je to isté ako pri vynásobení oboch strán prevráteným zlomkom.
x^{2}+\left(-\frac{\frac{190000}{9}}{-\frac{3400}{9}}\right)x=\frac{0}{-\frac{3400}{9}}
Delenie číslom -\frac{3400}{9} ruší násobenie číslom -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=\frac{0}{-\frac{3400}{9}}
Vydeľte číslo -\frac{190000}{9} zlomkom -\frac{3400}{9} tak, že číslo -\frac{190000}{9} vynásobíte prevrátenou hodnotou zlomku -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=0
Vydeľte číslo 0 zlomkom -\frac{3400}{9} tak, že číslo 0 vynásobíte prevrátenou hodnotou zlomku -\frac{3400}{9}.
x^{2}+\frac{950}{17}x+\left(\frac{475}{17}\right)^{2}=\left(\frac{475}{17}\right)^{2}
Číslo \frac{950}{17}, koeficient člena x, vydeľte číslom 2 a získajte výsledok \frac{475}{17}. Potom pridajte k obidvom stranám rovnice druhú mocninu \frac{475}{17}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}+\frac{950}{17}x+\frac{225625}{289}=\frac{225625}{289}
Umocnite zlomok \frac{475}{17} tak, že umocníte čitateľa aj menovateľa zlomku.
\left(x+\frac{475}{17}\right)^{2}=\frac{225625}{289}
Rozložte x^{2}+\frac{950}{17}x+\frac{225625}{289} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{475}{17}\right)^{2}}=\sqrt{\frac{225625}{289}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+\frac{475}{17}=\frac{475}{17} x+\frac{475}{17}=-\frac{475}{17}
Zjednodušte.
x=0 x=-\frac{950}{17}
Odčítajte hodnotu \frac{475}{17} od oboch strán rovnice.