Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

a+b=-5 ab=2\left(-3\right)=-6
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru 2x^{2}+ax+bx-3. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
1,-6 2,-3
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je záporná hodnota, záporné číslo má vyššiu absolútnu hodnotu ako kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -6.
1-6=-5 2-3=-1
Vypočítajte súčet pre každý pár.
a=-6 b=1
Riešenie je pár, ktorá poskytuje -5 súčtu.
\left(2x^{2}-6x\right)+\left(x-3\right)
Zapíšte 2x^{2}-5x-3 ako výraz \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Vyčleňte 2x z výrazu 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Vyberte spoločný člen x-3 pred zátvorku pomocou distributívneho zákona.
2x^{2}-5x-3=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Umocnite číslo -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Vynásobte číslo -4 číslom 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Vynásobte číslo -8 číslom -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Prirátajte 25 ku 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Vypočítajte druhú odmocninu čísla 49.
x=\frac{5±7}{2\times 2}
Opak čísla -5 je 5.
x=\frac{5±7}{4}
Vynásobte číslo 2 číslom 2.
x=\frac{12}{4}
Vyriešte rovnicu x=\frac{5±7}{4}, keď ± je plus. Prirátajte 5 ku 7.
x=3
Vydeľte číslo 12 číslom 4.
x=-\frac{2}{4}
Vyriešte rovnicu x=\frac{5±7}{4}, keď ± je mínus. Odčítajte číslo 7 od čísla 5.
x=-\frac{1}{2}
Vykráťte zlomok \frac{-2}{4} na základný tvar extrakciou a elimináciou 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte 3 a za x_{2} dosaďte -\frac{1}{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Prirátajte \frac{1}{2} ku x zistením spoločného menovateľa a sčítaním čitateľov. Potom vykráťte zlomok na jeho základný tvar, ak je to možné.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
Vykrátiť najväčšieho spoločného deliteľa 2 v 2 a 2.