Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

3x+x^{2}=180
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
3x+x^{2}-180=0
Odčítajte 180 z oboch strán.
x^{2}+3x-180=0
Zmeňte usporiadanie polynomickej rovnice do štandardného tvaru. Členy zoraďte od najväčšieho po najmenší.
a+b=3 ab=-180
Ak chcete vyriešiť rovnicu, faktor x^{2}+3x-180 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Vypočítajte súčet pre každý pár.
a=-12 b=15
Riešenie je pár, ktorá poskytuje 3 súčtu.
\left(x-12\right)\left(x+15\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=12 x=-15
Ak chcete nájsť riešenia rovníc, vyriešte x-12=0 a x+15=0.
3x+x^{2}=180
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
3x+x^{2}-180=0
Odčítajte 180 z oboch strán.
x^{2}+3x-180=0
Zmeňte usporiadanie polynomickej rovnice do štandardného tvaru. Členy zoraďte od najväčšieho po najmenší.
a+b=3 ab=1\left(-180\right)=-180
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx-180. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Vypočítajte súčet pre každý pár.
a=-12 b=15
Riešenie je pár, ktorá poskytuje 3 súčtu.
\left(x^{2}-12x\right)+\left(15x-180\right)
Zapíšte x^{2}+3x-180 ako výraz \left(x^{2}-12x\right)+\left(15x-180\right).
x\left(x-12\right)+15\left(x-12\right)
x na prvej skupine a 15 v druhá skupina.
\left(x-12\right)\left(x+15\right)
Vyberte spoločný člen x-12 pred zátvorku pomocou distributívneho zákona.
x=12 x=-15
Ak chcete nájsť riešenia rovníc, vyriešte x-12=0 a x+15=0.
3x+x^{2}=180
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
3x+x^{2}-180=0
Odčítajte 180 z oboch strán.
x^{2}+3x-180=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 3 za b a -180 za c.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
Umocnite číslo 3.
x=\frac{-3±\sqrt{9+720}}{2}
Vynásobte číslo -4 číslom -180.
x=\frac{-3±\sqrt{729}}{2}
Prirátajte 9 ku 720.
x=\frac{-3±27}{2}
Vypočítajte druhú odmocninu čísla 729.
x=\frac{24}{2}
Vyriešte rovnicu x=\frac{-3±27}{2}, keď ± je plus. Prirátajte -3 ku 27.
x=12
Vydeľte číslo 24 číslom 2.
x=-\frac{30}{2}
Vyriešte rovnicu x=\frac{-3±27}{2}, keď ± je mínus. Odčítajte číslo 27 od čísla -3.
x=-15
Vydeľte číslo -30 číslom 2.
x=12 x=-15
Teraz je rovnica vyriešená.
3x+x^{2}=180
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
x^{2}+3x=180
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
Číslo 3, koeficient člena x, vydeľte číslom 2 a získajte výsledok \frac{3}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu \frac{3}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
Umocnite zlomok \frac{3}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
Prirátajte 180 ku \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
Rozložte x^{2}+3x+\frac{9}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
Zjednodušte.
x=12 x=-15
Odčítajte hodnotu \frac{3}{2} od oboch strán rovnice.