Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

16-8x+x^{2}=0
Pridať položku x^{2} na obidve snímky.
x^{2}-8x+16=0
Zmeňte usporiadanie polynomickej rovnice do štandardného tvaru. Členy zoraďte od najväčšieho po najmenší.
a+b=-8 ab=16
Ak chcete vyriešiť rovnicu, faktor x^{2}-8x+16 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-16 -2,-8 -4,-4
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 16.
-1-16=-17 -2-8=-10 -4-4=-8
Vypočítajte súčet pre každý pár.
a=-4 b=-4
Riešenie je pár, ktorá poskytuje -8 súčtu.
\left(x-4\right)\left(x-4\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
\left(x-4\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=4
Ak chcete nájsť riešenie rovnice, vyriešte x-4=0.
16-8x+x^{2}=0
Pridať položku x^{2} na obidve snímky.
x^{2}-8x+16=0
Zmeňte usporiadanie polynomickej rovnice do štandardného tvaru. Členy zoraďte od najväčšieho po najmenší.
a+b=-8 ab=1\times 16=16
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+16. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-16 -2,-8 -4,-4
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 16.
-1-16=-17 -2-8=-10 -4-4=-8
Vypočítajte súčet pre každý pár.
a=-4 b=-4
Riešenie je pár, ktorá poskytuje -8 súčtu.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Zapíšte x^{2}-8x+16 ako výraz \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
x na prvej skupine a -4 v druhá skupina.
\left(x-4\right)\left(x-4\right)
Vyberte spoločný člen x-4 pred zátvorku pomocou distributívneho zákona.
\left(x-4\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=4
Ak chcete nájsť riešenie rovnice, vyriešte x-4=0.
16-8x+x^{2}=0
Pridať položku x^{2} na obidve snímky.
x^{2}-8x+16=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -8 za b a 16 za c.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Umocnite číslo -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Vynásobte číslo -4 číslom 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Prirátajte 64 ku -64.
x=-\frac{-8}{2}
Vypočítajte druhú odmocninu čísla 0.
x=\frac{8}{2}
Opak čísla -8 je 8.
x=4
Vydeľte číslo 8 číslom 2.
16-8x+x^{2}=0
Pridať položku x^{2} na obidve snímky.
-8x+x^{2}=-16
Odčítajte 16 z oboch strán. Výsledkom odčítania čísla od nuly je jeho záporná hodnota.
x^{2}-8x=-16
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Číslo -8, koeficient člena x, vydeľte číslom 2 a získajte výsledok -4. Potom pridajte k obidvom stranám rovnice druhú mocninu -4. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-8x+16=-16+16
Umocnite číslo -4.
x^{2}-8x+16=0
Prirátajte -16 ku 16.
\left(x-4\right)^{2}=0
Rozložte x^{2}-8x+16 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-4=0 x-4=0
Zjednodušte.
x=4 x=4
Prirátajte 4 ku obom stranám rovnice.
x=4
Teraz je rovnica vyriešená. Riešenia sú rovnaké.