Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\left(-3x+27\right)\left(2+x\right)>0
Použite distributívny zákon na vynásobenie -3 a x-9.
21x-3x^{2}+54>0
Použite distributívny zákon na vynásobenie výrazov -3x+27 a 2+x a zlúčenie podobných členov.
-21x+3x^{2}-54<0
Vynásobte nerovnosť číslom -1 tak, aby bol koeficient najvyššej mocniny vo výraze 21x-3x^{2}+54 kladný. Vzhľadom na to, že hodnota -1 je záporná, smer znaku nerovnosti sa zmení.
-21x+3x^{2}-54=0
Ak chcete nerovnosť vyriešiť, rozložte ľavú stranu na faktory. Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 3\left(-54\right)}}{2\times 3}
Všetky rovnice vo formulári ax^{2}+bx+c=0 je možné riešiť pomocou vzorca pre kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. V kvadratickej rovnici nahraďte 3 výrazom a, -21 výrazom b a -54 výrazom c.
x=\frac{21±33}{6}
Urobte výpočty.
x=9 x=-2
Vyriešte rovnicu x=\frac{21±33}{6}, ak ± je plus a ak ± je mínus.
3\left(x-9\right)\left(x+2\right)<0
Zapíšte nerovnosť pomocou získaných riešení.
x-9>0 x+2<0
Ak má byť výsledok súčinu záporný, výrazy x-9 a x+2 musia mať opačné znamienka. Zvážte, aký bude výsledok, ak je výraz x-9 kladný a výraz x+2 záporný.
x\in \emptyset
Toto má hodnotu False pre každú premennú x.
x+2>0 x-9<0
Zvážte, aký bude výsledok, ak je výraz x+2 kladný a výraz x-9 záporný.
x\in \left(-2,9\right)
Riešenie, ktoré platí pre obe nerovnosti, je x\in \left(-2,9\right).
x\in \left(-2,9\right)
Konečné riešenie získame kombináciou oboch získaných riešení.