Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

-3=x^{2}-4x+4-3
Na rozloženie výrazu \left(x-2\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-3=x^{2}-4x+1
Odčítajte 3 z 4 a dostanete 1.
x^{2}-4x+1=-3
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
x^{2}-4x+1+3=0
Pridať položku 3 na obidve snímky.
x^{2}-4x+4=0
Sčítaním 1 a 3 získate 4.
a+b=-4 ab=4
Ak chcete vyriešiť rovnicu, faktor x^{2}-4x+4 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-4 -2,-2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
-1-4=-5 -2-2=-4
Vypočítajte súčet pre každý pár.
a=-2 b=-2
Riešenie je pár, ktorá poskytuje -4 súčtu.
\left(x-2\right)\left(x-2\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
\left(x-2\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=2
Ak chcete nájsť riešenie rovnice, vyriešte x-2=0.
-3=x^{2}-4x+4-3
Na rozloženie výrazu \left(x-2\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-3=x^{2}-4x+1
Odčítajte 3 z 4 a dostanete 1.
x^{2}-4x+1=-3
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
x^{2}-4x+1+3=0
Pridať položku 3 na obidve snímky.
x^{2}-4x+4=0
Sčítaním 1 a 3 získate 4.
a+b=-4 ab=1\times 4=4
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+4. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-4 -2,-2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
-1-4=-5 -2-2=-4
Vypočítajte súčet pre každý pár.
a=-2 b=-2
Riešenie je pár, ktorá poskytuje -4 súčtu.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Zapíšte x^{2}-4x+4 ako výraz \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
x na prvej skupine a -2 v druhá skupina.
\left(x-2\right)\left(x-2\right)
Vyberte spoločný člen x-2 pred zátvorku pomocou distributívneho zákona.
\left(x-2\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
x=2
Ak chcete nájsť riešenie rovnice, vyriešte x-2=0.
-3=x^{2}-4x+4-3
Na rozloženie výrazu \left(x-2\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-3=x^{2}-4x+1
Odčítajte 3 z 4 a dostanete 1.
x^{2}-4x+1=-3
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
x^{2}-4x+1+3=0
Pridať položku 3 na obidve snímky.
x^{2}-4x+4=0
Sčítaním 1 a 3 získate 4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -4 za b a 4 za c.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Umocnite číslo -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Vynásobte číslo -4 číslom 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Prirátajte 16 ku -16.
x=-\frac{-4}{2}
Vypočítajte druhú odmocninu čísla 0.
x=\frac{4}{2}
Opak čísla -4 je 4.
x=2
Vydeľte číslo 4 číslom 2.
-3=x^{2}-4x+4-3
Na rozloženie výrazu \left(x-2\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-3=x^{2}-4x+1
Odčítajte 3 z 4 a dostanete 1.
x^{2}-4x+1=-3
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
x^{2}-4x=-3-1
Odčítajte 1 z oboch strán.
x^{2}-4x=-4
Odčítajte 1 z -3 a dostanete -4.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Číslo -4, koeficient člena x, vydeľte číslom 2 a získajte výsledok -2. Potom pridajte k obidvom stranám rovnice druhú mocninu -2. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-4x+4=-4+4
Umocnite číslo -2.
x^{2}-4x+4=0
Prirátajte -4 ku 4.
\left(x-2\right)^{2}=0
Rozložte x^{2}-4x+4 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-2=0 x-2=0
Zjednodušte.
x=2 x=2
Prirátajte 2 ku obom stranám rovnice.
x=2
Teraz je rovnica vyriešená. Riešenia sú rovnaké.