Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozložiť na faktory
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

-\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Na rozloženie výrazu \left(\sqrt{2}-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{2-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{2} je 2.
-\frac{3-2\sqrt{2}}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Sčítaním 2 a 1 získate 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Preveďte menovateľa \frac{3-2\sqrt{2}}{4\sqrt{2}} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\times 2}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{2} je 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Vynásobením 4 a 2 získate 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Na rozloženie výrazu \left(\sqrt{5}+\sqrt{3}\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{5} je 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Ak chcete \sqrt{5} vynásobte a \sqrt{3}, vynásobte čísla v štvorcových koreňovom priečinku.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+3}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{3} je 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{8+2\sqrt{15}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Sčítaním 5 a 3 získate 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Preveďte menovateľa \frac{8+2\sqrt{15}}{\sqrt{15}} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{15}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{15} je 15.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Na rozloženie výrazu \left(\sqrt{2}+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{2+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{2} je 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{3+2\sqrt{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Sčítaním 2 a 1 získate 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Preveďte menovateľa \frac{3+2\sqrt{2}}{4\sqrt{2}} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\times 2}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{2} je 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Vynásobením 4 a 2 získate 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Na rozloženie výrazu \left(\sqrt{5}-\sqrt{3}\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Druhá mocnina \sqrt{5} je 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Ak chcete \sqrt{5} vynásobte a \sqrt{3}, vynásobte čísla v štvorcových koreňovom priečinku.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+3}{\sqrt{15}}
Druhá mocnina \sqrt{3} je 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{8-2\sqrt{15}}{\sqrt{15}}
Sčítaním 5 a 3 získate 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Preveďte menovateľa \frac{8-2\sqrt{15}}{\sqrt{15}} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{15}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Druhá mocnina \sqrt{15} je 15.
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120}+\frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 8 a 15 je 120. Vynásobte číslo -\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8} číslom \frac{15}{15}. Vynásobte číslo \frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15} číslom \frac{8}{8}.
\frac{-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Keďže -\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120} a \frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{-45\sqrt{2}+60+64\sqrt{15}+240}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Vynásobiť vo výraze -15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Vo výraze -45\sqrt{2}+60+64\sqrt{15}+240 urobte výpočty.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 120 a 8 je 120. Vynásobte číslo \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8} číslom \frac{15}{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Keďže \frac{-45\sqrt{2}+300+64\sqrt{15}}{120} a \frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Vynásobiť vo výraze -45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}.
\frac{360+64\sqrt{15}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Vo výraze -45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60 urobte výpočty.
\frac{360+64\sqrt{15}}{120}-\frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel 120 a 15 je 120. Vynásobte číslo \frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15} číslom \frac{8}{8}.
\frac{360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Keďže \frac{360+64\sqrt{15}}{120} a \frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{360+64\sqrt{15}-64\sqrt{15}+240}{120}
Vynásobiť vo výraze 360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}.
\frac{600}{120}
Vo výraze 360+64\sqrt{15}-64\sqrt{15}+240 urobte výpočty.
5
Vydeľte číslo 600 číslom 120 a dostanete 5.