Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

2x^{2}-5x+2=5
Použite distributívny zákon na vynásobenie výrazov 2x-1 a x-2 a zlúčenie podobných členov.
2x^{2}-5x+2-5=0
Odčítajte 5 z oboch strán.
2x^{2}-5x-3=0
Odčítajte 5 z 2 a dostanete -3.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 2 za a, -5 za b a -3 za c.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Umocnite číslo -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Vynásobte číslo -4 číslom 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Vynásobte číslo -8 číslom -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Prirátajte 25 ku 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Vypočítajte druhú odmocninu čísla 49.
x=\frac{5±7}{2\times 2}
Opak čísla -5 je 5.
x=\frac{5±7}{4}
Vynásobte číslo 2 číslom 2.
x=\frac{12}{4}
Vyriešte rovnicu x=\frac{5±7}{4}, keď ± je plus. Prirátajte 5 ku 7.
x=3
Vydeľte číslo 12 číslom 4.
x=-\frac{2}{4}
Vyriešte rovnicu x=\frac{5±7}{4}, keď ± je mínus. Odčítajte číslo 7 od čísla 5.
x=-\frac{1}{2}
Vykráťte zlomok \frac{-2}{4} na základný tvar extrakciou a elimináciou 2.
x=3 x=-\frac{1}{2}
Teraz je rovnica vyriešená.
2x^{2}-5x+2=5
Použite distributívny zákon na vynásobenie výrazov 2x-1 a x-2 a zlúčenie podobných členov.
2x^{2}-5x=5-2
Odčítajte 2 z oboch strán.
2x^{2}-5x=3
Odčítajte 2 z 5 a dostanete 3.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Vydeľte obe strany hodnotou 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
Delenie číslom 2 ruší násobenie číslom 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Číslo -\frac{5}{2}, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{5}{4}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{5}{4}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Umocnite zlomok -\frac{5}{4} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Prirátajte \frac{3}{2} ku \frac{25}{16} zistením spoločného menovateľa a sčítaním čitateľov. Potom vykráťte zlomok na jeho základný tvar, ak je to možné.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Rozložte x^{2}-\frac{5}{2}x+\frac{25}{16} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Zjednodušte.
x=3 x=-\frac{1}{2}
Prirátajte \frac{5}{4} ku obom stranám rovnice.