Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x-2-\frac{1}{2}x-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Použite distributívny zákon na vynásobenie -\frac{1}{2} a x+1.
\frac{1}{2}x-2-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Skombinovaním x a -\frac{1}{2}x získate \frac{1}{2}x.
\frac{1}{2}x-\frac{4}{2}-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Konvertovať -2 na zlomok -\frac{4}{2}.
\frac{1}{2}x+\frac{-4-1}{2}=\frac{5}{6}\left(x+2\right)
Keďže -\frac{4}{2} a \frac{1}{2} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}\left(x+2\right)
Odčítajte 1 z -4 a dostanete -5.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5}{6}\times 2
Použite distributívny zákon na vynásobenie \frac{5}{6} a x+2.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5\times 2}{6}
Vyjadriť \frac{5}{6}\times 2 vo formáte jediného zlomku.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{10}{6}
Vynásobením 5 a 2 získate 10.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5}{3}
Vykráťte zlomok \frac{10}{6} na základný tvar extrakciou a elimináciou 2.
\frac{1}{2}x-\frac{5}{2}-\frac{5}{6}x=\frac{5}{3}
Odčítajte \frac{5}{6}x z oboch strán.
-\frac{1}{3}x-\frac{5}{2}=\frac{5}{3}
Skombinovaním \frac{1}{2}x a -\frac{5}{6}x získate -\frac{1}{3}x.
-\frac{1}{3}x=\frac{5}{3}+\frac{5}{2}
Pridať položku \frac{5}{2} na obidve snímky.
-\frac{1}{3}x=\frac{10}{6}+\frac{15}{6}
Najmenší spoločný násobok čísiel 3 a 2 je 6. Previesť čísla \frac{5}{3} a \frac{5}{2} na zlomky s menovateľom 6.
-\frac{1}{3}x=\frac{10+15}{6}
Keďže \frac{10}{6} a \frac{15}{6} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
-\frac{1}{3}x=\frac{25}{6}
Sčítaním 10 a 15 získate 25.
x=\frac{25}{6}\left(-3\right)
Vynásobte obe strany číslom -3, ktoré je prevrátenou hodnotou čísla -\frac{1}{3}.
x=\frac{25\left(-3\right)}{6}
Vyjadriť \frac{25}{6}\left(-3\right) vo formáte jediného zlomku.
x=\frac{-75}{6}
Vynásobením 25 a -3 získate -75.
x=-\frac{25}{2}
Vykráťte zlomok \frac{-75}{6} na základný tvar extrakciou a elimináciou 3.