Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}-2x+1-5\left(x-1\right)+4=0
Na rozloženie výrazu \left(x-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x+1-5x+5+4=0
Použite distributívny zákon na vynásobenie -5 a x-1.
x^{2}-7x+1+5+4=0
Skombinovaním -2x a -5x získate -7x.
x^{2}-7x+6+4=0
Sčítaním 1 a 5 získate 6.
x^{2}-7x+10=0
Sčítaním 6 a 4 získate 10.
a+b=-7 ab=10
Ak chcete vyriešiť rovnicu, faktor x^{2}-7x+10 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-10 -2,-5
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 10.
-1-10=-11 -2-5=-7
Vypočítajte súčet pre každý pár.
a=-5 b=-2
Riešenie je pár, ktorá poskytuje -7 súčtu.
\left(x-5\right)\left(x-2\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=5 x=2
Ak chcete nájsť riešenia rovníc, vyriešte x-5=0 a x-2=0.
x^{2}-2x+1-5\left(x-1\right)+4=0
Na rozloženie výrazu \left(x-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x+1-5x+5+4=0
Použite distributívny zákon na vynásobenie -5 a x-1.
x^{2}-7x+1+5+4=0
Skombinovaním -2x a -5x získate -7x.
x^{2}-7x+6+4=0
Sčítaním 1 a 5 získate 6.
x^{2}-7x+10=0
Sčítaním 6 a 4 získate 10.
a+b=-7 ab=1\times 10=10
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+10. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-10 -2,-5
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 10.
-1-10=-11 -2-5=-7
Vypočítajte súčet pre každý pár.
a=-5 b=-2
Riešenie je pár, ktorá poskytuje -7 súčtu.
\left(x^{2}-5x\right)+\left(-2x+10\right)
Zapíšte x^{2}-7x+10 ako výraz \left(x^{2}-5x\right)+\left(-2x+10\right).
x\left(x-5\right)-2\left(x-5\right)
x na prvej skupine a -2 v druhá skupina.
\left(x-5\right)\left(x-2\right)
Vyberte spoločný člen x-5 pred zátvorku pomocou distributívneho zákona.
x=5 x=2
Ak chcete nájsť riešenia rovníc, vyriešte x-5=0 a x-2=0.
x^{2}-2x+1-5\left(x-1\right)+4=0
Na rozloženie výrazu \left(x-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x+1-5x+5+4=0
Použite distributívny zákon na vynásobenie -5 a x-1.
x^{2}-7x+1+5+4=0
Skombinovaním -2x a -5x získate -7x.
x^{2}-7x+6+4=0
Sčítaním 1 a 5 získate 6.
x^{2}-7x+10=0
Sčítaním 6 a 4 získate 10.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -7 za b a 10 za c.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10}}{2}
Umocnite číslo -7.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2}
Vynásobte číslo -4 číslom 10.
x=\frac{-\left(-7\right)±\sqrt{9}}{2}
Prirátajte 49 ku -40.
x=\frac{-\left(-7\right)±3}{2}
Vypočítajte druhú odmocninu čísla 9.
x=\frac{7±3}{2}
Opak čísla -7 je 7.
x=\frac{10}{2}
Vyriešte rovnicu x=\frac{7±3}{2}, keď ± je plus. Prirátajte 7 ku 3.
x=5
Vydeľte číslo 10 číslom 2.
x=\frac{4}{2}
Vyriešte rovnicu x=\frac{7±3}{2}, keď ± je mínus. Odčítajte číslo 3 od čísla 7.
x=2
Vydeľte číslo 4 číslom 2.
x=5 x=2
Teraz je rovnica vyriešená.
x^{2}-2x+1-5\left(x-1\right)+4=0
Na rozloženie výrazu \left(x-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
x^{2}-2x+1-5x+5+4=0
Použite distributívny zákon na vynásobenie -5 a x-1.
x^{2}-7x+1+5+4=0
Skombinovaním -2x a -5x získate -7x.
x^{2}-7x+6+4=0
Sčítaním 1 a 5 získate 6.
x^{2}-7x+10=0
Sčítaním 6 a 4 získate 10.
x^{2}-7x=-10
Odčítajte 10 z oboch strán. Výsledkom odčítania čísla od nuly je jeho záporná hodnota.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Číslo -7, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{7}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{7}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Umocnite zlomok -\frac{7}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Prirátajte -10 ku \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Rozložte x^{2}-7x+\frac{49}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Zjednodušte.
x=5 x=2
Prirátajte \frac{7}{2} ku obom stranám rovnice.