Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}+4x+4-3\left(x+2\right)-4=0
Na rozloženie výrazu \left(x+2\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+4x+4-3x-6-4=0
Použite distributívny zákon na vynásobenie -3 a x+2.
x^{2}+x+4-6-4=0
Skombinovaním 4x a -3x získate x.
x^{2}+x-2-4=0
Odčítajte 6 z 4 a dostanete -2.
x^{2}+x-6=0
Odčítajte 4 z -2 a dostanete -6.
a+b=1 ab=-6
Ak chcete vyriešiť rovnicu, faktor x^{2}+x-6 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,6 -2,3
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -6.
-1+6=5 -2+3=1
Vypočítajte súčet pre každý pár.
a=-2 b=3
Riešenie je pár, ktorá poskytuje 1 súčtu.
\left(x-2\right)\left(x+3\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=2 x=-3
Ak chcete nájsť riešenia rovníc, vyriešte x-2=0 a x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Na rozloženie výrazu \left(x+2\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+4x+4-3x-6-4=0
Použite distributívny zákon na vynásobenie -3 a x+2.
x^{2}+x+4-6-4=0
Skombinovaním 4x a -3x získate x.
x^{2}+x-2-4=0
Odčítajte 6 z 4 a dostanete -2.
x^{2}+x-6=0
Odčítajte 4 z -2 a dostanete -6.
a+b=1 ab=1\left(-6\right)=-6
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx-6. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,6 -2,3
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -6.
-1+6=5 -2+3=1
Vypočítajte súčet pre každý pár.
a=-2 b=3
Riešenie je pár, ktorá poskytuje 1 súčtu.
\left(x^{2}-2x\right)+\left(3x-6\right)
Zapíšte x^{2}+x-6 ako výraz \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
x na prvej skupine a 3 v druhá skupina.
\left(x-2\right)\left(x+3\right)
Vyberte spoločný člen x-2 pred zátvorku pomocou distributívneho zákona.
x=2 x=-3
Ak chcete nájsť riešenia rovníc, vyriešte x-2=0 a x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Na rozloženie výrazu \left(x+2\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+4x+4-3x-6-4=0
Použite distributívny zákon na vynásobenie -3 a x+2.
x^{2}+x+4-6-4=0
Skombinovaním 4x a -3x získate x.
x^{2}+x-2-4=0
Odčítajte 6 z 4 a dostanete -2.
x^{2}+x-6=0
Odčítajte 4 z -2 a dostanete -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, 1 za b a -6 za c.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Umocnite číslo 1.
x=\frac{-1±\sqrt{1+24}}{2}
Vynásobte číslo -4 číslom -6.
x=\frac{-1±\sqrt{25}}{2}
Prirátajte 1 ku 24.
x=\frac{-1±5}{2}
Vypočítajte druhú odmocninu čísla 25.
x=\frac{4}{2}
Vyriešte rovnicu x=\frac{-1±5}{2}, keď ± je plus. Prirátajte -1 ku 5.
x=2
Vydeľte číslo 4 číslom 2.
x=-\frac{6}{2}
Vyriešte rovnicu x=\frac{-1±5}{2}, keď ± je mínus. Odčítajte číslo 5 od čísla -1.
x=-3
Vydeľte číslo -6 číslom 2.
x=2 x=-3
Teraz je rovnica vyriešená.
x^{2}+4x+4-3\left(x+2\right)-4=0
Na rozloženie výrazu \left(x+2\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+4x+4-3x-6-4=0
Použite distributívny zákon na vynásobenie -3 a x+2.
x^{2}+x+4-6-4=0
Skombinovaním 4x a -3x získate x.
x^{2}+x-2-4=0
Odčítajte 6 z 4 a dostanete -2.
x^{2}+x-6=0
Odčítajte 4 z -2 a dostanete -6.
x^{2}+x=6
Pridať položku 6 na obidve snímky. Prirátaním nuly sa hodnota nezmení.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Číslo 1, koeficient člena x, vydeľte číslom 2 a získajte výsledok \frac{1}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu \frac{1}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Umocnite zlomok \frac{1}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Prirátajte 6 ku \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Rozložte x^{2}+x+\frac{1}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Zjednodušte.
x=2 x=-3
Odčítajte hodnotu \frac{1}{2} od oboch strán rovnice.