Vyhodnotiť
-16\left(ab\right)^{2}
Rozšíriť
-16\left(ab\right)^{2}
Zdieľať
Skopírované do schránky
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
Na rozloženie výrazu \left(a-2b\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
Na rozloženie výrazu \left(a+2b\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
Použite distributívny zákon na vynásobenie výrazov a^{2}-4ab+4b^{2} a a^{2}+4ab+4b^{2} a zlúčenie podobných členov.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Na rozloženie výrazu \left(a^{2}+4b^{2}\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
Ak chcete nájsť opačnú hodnotu k výrazu a^{4}+8a^{2}b^{2}+16b^{4}, nájdite opačnú hodnotu jednotlivých členov.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
Skombinovaním a^{4} a -a^{4} získate 0.
-16a^{2}b^{2}+16b^{4}-16b^{4}
Skombinovaním -8a^{2}b^{2} a -8a^{2}b^{2} získate -16a^{2}b^{2}.
-16a^{2}b^{2}
Skombinovaním 16b^{4} a -16b^{4} získate 0.
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
Na rozloženie výrazu \left(a-2b\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
Na rozloženie výrazu \left(a+2b\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
Použite distributívny zákon na vynásobenie výrazov a^{2}-4ab+4b^{2} a a^{2}+4ab+4b^{2} a zlúčenie podobných členov.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Na rozloženie výrazu \left(a^{2}+4b^{2}\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
Ak chcete nájsť opačnú hodnotu k výrazu a^{4}+8a^{2}b^{2}+16b^{4}, nájdite opačnú hodnotu jednotlivých členov.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
Skombinovaním a^{4} a -a^{4} získate 0.
-16a^{2}b^{2}+16b^{4}-16b^{4}
Skombinovaním -8a^{2}b^{2} a -8a^{2}b^{2} získate -16a^{2}b^{2}.
-16a^{2}b^{2}
Skombinovaním 16b^{4} a -16b^{4} získate 0.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}