Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozšíriť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 2x^{2} číslom \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Keďže \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{1}{\left(x-2\right)\left(x+1\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Vynásobiť vo výraze 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Zlúčte podobné členy vo výraze 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Ak chcete umocniť \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}, umocnite čitateľa a menovateľa a potom ich vydeľte.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Rozšírte exponent \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
Použite distributívny zákon na vynásobenie -8 a 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
Použite distributívny zákon na vynásobenie 7 a x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
Použite distributívny zákon na vynásobenie výrazov 7x-7 a x+2 a zlúčenie podobných členov.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Skombinovaním -16x^{2} a 7x^{2} získate -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Odčítajte 14 z 8 a dostanete -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo -9x^{2}-6+7x číslom \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Keďže \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} a \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Vynásobiť vo výraze \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Zlúčte podobné členy vo výraze 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Rozšírte exponent \left(x-2\right)^{2}\left(x+1\right)^{2}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 2x^{2} číslom \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Keďže \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{1}{\left(x-2\right)\left(x+1\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Vynásobiť vo výraze 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Zlúčte podobné členy vo výraze 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Ak chcete umocniť \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}, umocnite čitateľa a menovateľa a potom ich vydeľte.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7\left(x-1\right)\left(x+2\right)
Rozšírte exponent \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7\left(x-1\right)\left(x+2\right)
Použite distributívny zákon na vynásobenie -8 a 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+\left(7x-7\right)\left(x+2\right)
Použite distributívny zákon na vynásobenie 7 a x-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7x^{2}+7x-14
Použite distributívny zákon na vynásobenie výrazov 7x-7 a x+2 a zlúčenie podobných členov.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}+8+7x-14
Skombinovaním -16x^{2} a 7x^{2} získate -9x^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-9x^{2}-6+7x
Odčítajte 14 z 8 a dostanete -6.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo -9x^{2}-6+7x číslom \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Keďže \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} a \frac{\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Vynásobiť vo výraze \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-9x^{2}-6+7x\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Zlúčte podobné členy vo výraze 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-9x^{6}+18x^{5}+27x^{4}-36x^{3}-36x^{2}-6x^{4}+12x^{3}+18x^{2}-24x-24+7x^{5}-14x^{4}-21x^{3}+28x^{2}+28x.
\frac{4x^{8}-8x^{7}-21x^{6}+19x^{4}+41x^{5}-41x^{3}+18x^{2}-23+4x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Rozšírte exponent \left(x-2\right)^{2}\left(x+1\right)^{2}.