Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}-x-1=16180
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x^{2}-x-1-16180=16180-16180
Odčítajte hodnotu 16180 od oboch strán rovnice.
x^{2}-x-1-16180=0
Výsledkom odčítania čísla 16180 od seba samého bude 0.
x^{2}-x-16181=0
Odčítajte číslo 16180 od čísla -1.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-16181\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -1 za b a -16181 za c.
x=\frac{-\left(-1\right)±\sqrt{1+64724}}{2}
Vynásobte číslo -4 číslom -16181.
x=\frac{-\left(-1\right)±\sqrt{64725}}{2}
Prirátajte 1 ku 64724.
x=\frac{-\left(-1\right)±5\sqrt{2589}}{2}
Vypočítajte druhú odmocninu čísla 64725.
x=\frac{1±5\sqrt{2589}}{2}
Opak čísla -1 je 1.
x=\frac{5\sqrt{2589}+1}{2}
Vyriešte rovnicu x=\frac{1±5\sqrt{2589}}{2}, keď ± je plus. Prirátajte 1 ku 5\sqrt{2589}.
x=\frac{1-5\sqrt{2589}}{2}
Vyriešte rovnicu x=\frac{1±5\sqrt{2589}}{2}, keď ± je mínus. Odčítajte číslo 5\sqrt{2589} od čísla 1.
x=\frac{5\sqrt{2589}+1}{2} x=\frac{1-5\sqrt{2589}}{2}
Teraz je rovnica vyriešená.
x^{2}-x-1=16180
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
x^{2}-x-1-\left(-1\right)=16180-\left(-1\right)
Prirátajte 1 ku obom stranám rovnice.
x^{2}-x=16180-\left(-1\right)
Výsledkom odčítania čísla -1 od seba samého bude 0.
x^{2}-x=16181
Odčítajte číslo -1 od čísla 16180.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=16181+\left(-\frac{1}{2}\right)^{2}
Číslo -1, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{1}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{1}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-x+\frac{1}{4}=16181+\frac{1}{4}
Umocnite zlomok -\frac{1}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}-x+\frac{1}{4}=\frac{64725}{4}
Prirátajte 16181 ku \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{64725}{4}
Rozložte x^{2}-x+\frac{1}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{64725}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{1}{2}=\frac{5\sqrt{2589}}{2} x-\frac{1}{2}=-\frac{5\sqrt{2589}}{2}
Zjednodušte.
x=\frac{5\sqrt{2589}+1}{2} x=\frac{1-5\sqrt{2589}}{2}
Prirátajte \frac{1}{2} ku obom stranám rovnice.