Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}-4x-5=150
Vynásobením 25 a 6 získate 150.
x^{2}-4x-5-150=0
Odčítajte 150 z oboch strán.
x^{2}-4x-155=0
Odčítajte 150 z -5 a dostanete -155.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-155\right)}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -4 za b a -155 za c.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-155\right)}}{2}
Umocnite číslo -4.
x=\frac{-\left(-4\right)±\sqrt{16+620}}{2}
Vynásobte číslo -4 číslom -155.
x=\frac{-\left(-4\right)±\sqrt{636}}{2}
Prirátajte 16 ku 620.
x=\frac{-\left(-4\right)±2\sqrt{159}}{2}
Vypočítajte druhú odmocninu čísla 636.
x=\frac{4±2\sqrt{159}}{2}
Opak čísla -4 je 4.
x=\frac{2\sqrt{159}+4}{2}
Vyriešte rovnicu x=\frac{4±2\sqrt{159}}{2}, keď ± je plus. Prirátajte 4 ku 2\sqrt{159}.
x=\sqrt{159}+2
Vydeľte číslo 4+2\sqrt{159} číslom 2.
x=\frac{4-2\sqrt{159}}{2}
Vyriešte rovnicu x=\frac{4±2\sqrt{159}}{2}, keď ± je mínus. Odčítajte číslo 2\sqrt{159} od čísla 4.
x=2-\sqrt{159}
Vydeľte číslo 4-2\sqrt{159} číslom 2.
x=\sqrt{159}+2 x=2-\sqrt{159}
Teraz je rovnica vyriešená.
x^{2}-4x-5=150
Vynásobením 25 a 6 získate 150.
x^{2}-4x=150+5
Pridať položku 5 na obidve snímky.
x^{2}-4x=155
Sčítaním 150 a 5 získate 155.
x^{2}-4x+\left(-2\right)^{2}=155+\left(-2\right)^{2}
Číslo -4, koeficient člena x, vydeľte číslom 2 a získajte výsledok -2. Potom pridajte k obidvom stranám rovnice druhú mocninu -2. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-4x+4=155+4
Umocnite číslo -2.
x^{2}-4x+4=159
Prirátajte 155 ku 4.
\left(x-2\right)^{2}=159
Rozložte x^{2}-4x+4 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{159}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-2=\sqrt{159} x-2=-\sqrt{159}
Zjednodušte.
x=\sqrt{159}+2 x=2-\sqrt{159}
Prirátajte 2 ku obom stranám rovnice.