Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

a+b=1 ab=1\left(-42\right)=-42
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru x^{2}+ax+bx-42. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,42 -2,21 -3,14 -6,7
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Vypočítajte súčet pre každý pár.
a=-6 b=7
Riešenie je pár, ktorá poskytuje 1 súčtu.
\left(x^{2}-6x\right)+\left(7x-42\right)
Zapíšte x^{2}+x-42 ako výraz \left(x^{2}-6x\right)+\left(7x-42\right).
x\left(x-6\right)+7\left(x-6\right)
x na prvej skupine a 7 v druhá skupina.
\left(x-6\right)\left(x+7\right)
Vyberte spoločný člen x-6 pred zátvorku pomocou distributívneho zákona.
x^{2}+x-42=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
Umocnite číslo 1.
x=\frac{-1±\sqrt{1+168}}{2}
Vynásobte číslo -4 číslom -42.
x=\frac{-1±\sqrt{169}}{2}
Prirátajte 1 ku 168.
x=\frac{-1±13}{2}
Vypočítajte druhú odmocninu čísla 169.
x=\frac{12}{2}
Vyriešte rovnicu x=\frac{-1±13}{2}, keď ± je plus. Prirátajte -1 ku 13.
x=6
Vydeľte číslo 12 číslom 2.
x=-\frac{14}{2}
Vyriešte rovnicu x=\frac{-1±13}{2}, keď ± je mínus. Odčítajte číslo 13 od čísla -1.
x=-7
Vydeľte číslo -14 číslom 2.
x^{2}+x-42=\left(x-6\right)\left(x-\left(-7\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte 6 a za x_{2} dosaďte -7.
x^{2}+x-42=\left(x-6\right)\left(x+7\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.