Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Riešenie pre x (complex solution)
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

3^{x}-2\times 3^{x}\times \frac{1}{9}=7
Vypočítajte -2 ako mocninu čísla 3 a dostanete \frac{1}{9}.
3^{x}-\frac{2}{9}\times 3^{x}=7
Vynásobením 2 a \frac{1}{9} získate \frac{2}{9}.
\frac{7}{9}\times 3^{x}=7
Skombinovaním 3^{x} a -\frac{2}{9}\times 3^{x} získate \frac{7}{9}\times 3^{x}.
3^{x}=7\times \frac{9}{7}
Vynásobte obe strany číslom \frac{9}{7}, ktoré je prevrátenou hodnotou čísla \frac{7}{9}.
3^{x}=9
Vynásobením 7 a \frac{9}{7} získate 9.
\log(3^{x})=\log(9)
Vypočítajte logaritmus oboch strán rovnice.
x\log(3)=\log(9)
Logaritmus umocneného čísla je mocniteľ vynásobený logaritmom daného čísla.
x=\frac{\log(9)}{\log(3)}
Vydeľte obe strany hodnotou \log(3).
x=\log_{3}\left(9\right)
Pomocou vzorca na zmenu základne \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).