Vyhodnotiť
4\sqrt{3}+7\approx 13,92820323
Rozšíriť
4 \sqrt{3} + 7 = 13,92820323
Zdieľať
Skopírované do schránky
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Preveďte menovateľa \frac{\sqrt{3}+1}{\sqrt{3}-1} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Zvážte \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Umocnite číslo \sqrt{3}. Umocnite číslo 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Odčítajte 1 z 3 a dostanete 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Vynásobením \sqrt{3}+1 a \sqrt{3}+1 získate \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Na rozloženie výrazu \left(\sqrt{3}+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Druhá mocnina \sqrt{3} je 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Sčítaním 3 a 1 získate 4.
\left(2+\sqrt{3}\right)^{2}
Vydeľte jednotlivé členy výrazu 4+2\sqrt{3} číslom 2 a dostanete 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Na rozloženie výrazu \left(2+\sqrt{3}\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
4+4\sqrt{3}+3
Druhá mocnina \sqrt{3} je 3.
7+4\sqrt{3}
Sčítaním 4 a 3 získate 7.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Preveďte menovateľa \frac{\sqrt{3}+1}{\sqrt{3}-1} na racionálne číslo vynásobením čitateľa a menovateľa číslom \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Zvážte \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Umocnite číslo \sqrt{3}. Umocnite číslo 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Odčítajte 1 z 3 a dostanete 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Vynásobením \sqrt{3}+1 a \sqrt{3}+1 získate \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Na rozloženie výrazu \left(\sqrt{3}+1\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Druhá mocnina \sqrt{3} je 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Sčítaním 3 a 1 získate 4.
\left(2+\sqrt{3}\right)^{2}
Vydeľte jednotlivé členy výrazu 4+2\sqrt{3} číslom 2 a dostanete 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Na rozloženie výrazu \left(2+\sqrt{3}\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
4+4\sqrt{3}+3
Druhá mocnina \sqrt{3} je 3.
7+4\sqrt{3}
Sčítaním 4 a 3 získate 7.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}