Skočiť na hlavný obsah
Derivovať podľa θ
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\sec(2\theta ^{1})\tan(2\theta ^{1})\frac{\mathrm{d}}{\mathrm{d}\theta }(2\theta ^{1})
Ak je F zložením dvoch diferencovateľných funkcií f\left(u\right) a u=g\left(x\right), teda ak F\left(x\right)=f\left(g\left(x\right)\right), deriváciou funkcie F je násobok derivácie f vo vzťahu k u a derivácie g vo vzťahu k x, teda \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\sec(2\theta ^{1})\tan(2\theta ^{1})\times 2\theta ^{1-1}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
2\sec(2\theta ^{1})\tan(2\theta ^{1})
Zjednodušte.
2\sec(2\theta )\tan(2\theta )
Pre akýkoľvek člen t, t^{1}=t.