Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int 3x^{5}-2x^{3}+x\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int 3x^{5}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrujte súčet podľa výrazov.
3\int x^{5}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{x^{6}}{2}-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{5}\mathrm{d}x s \frac{x^{6}}{6}. Vynásobte číslo 3 číslom \frac{x^{6}}{6}.
\frac{x^{6}}{2}-\frac{x^{4}}{2}+\int x\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Vynásobte číslo -2 číslom \frac{x^{4}}{4}.
\frac{x^{6}-x^{4}+x^{2}}{2}
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}.
\frac{4^{6}}{2}-\frac{4^{4}}{2}+\frac{4^{2}}{2}-\left(\frac{2^{6}}{2}-\frac{2^{4}}{2}+\frac{2^{2}}{2}\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
1902
Zjednodušte.