Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int x^{2}+2+3x^{4}+2e^{9}\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 2e^{9}\mathrm{d}x
Integrujte súčet podľa výrazov.
\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{x^{3}}{3}+\int 2\mathrm{d}x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}.
\frac{x^{3}}{3}+2x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Nájdite integrál 2 pomocou tabuľky bežných integrály pravidiel \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+2x+\frac{3x^{5}}{5}+2\int e^{9}\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{4}\mathrm{d}x s \frac{x^{5}}{5}. Vynásobte číslo 3 číslom \frac{x^{5}}{5}.
\frac{x^{3}}{3}+2x+\frac{3x^{5}}{5}+2e^{9}x
Nájdite integrál e^{9} pomocou tabuľky bežných integrály pravidiel \int a\mathrm{d}x=ax.
\frac{100^{3}}{3}+2\times 100+\frac{3}{5}\times 100^{5}+2e^{9}\times 100-\left(\frac{0^{3}}{3}+2\times 0+\frac{3}{5}\times 0^{5}+2e^{9}\times 0\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
\frac{18001000600}{3}+200e^{9}
Zjednodušte.