Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int _{0}^{1}x^{2}-2x+1\mathrm{d}x
Na rozloženie výrazu \left(x-1\right)^{2} použite binomickú vetu \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\int x^{2}-2x+1\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
Integrujte súčet podľa výrazov.
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}. Vynásobte číslo -2 číslom \frac{x^{2}}{2}.
\frac{x^{3}}{3}-x^{2}+x
Nájdite integrál 1 pomocou tabuľky bežných integrály pravidiel \int a\mathrm{d}x=ax.
\frac{1^{3}}{3}-1^{2}+1-\left(\frac{0^{3}}{3}-0^{2}+0\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
\frac{1}{3}
Zjednodušte.