Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int 2x^{2}+x\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrujte súčet podľa výrazov.
2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{2x^{3}}{3}+\int x\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Vynásobte číslo 2 číslom \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}.
\frac{2}{3}\times 2^{3}+\frac{2^{2}}{2}-\left(\frac{2}{3}\left(-1\right)^{3}+\frac{\left(-1\right)^{2}}{2}\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
\frac{15}{2}
Zjednodušte.