Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int -3\left(-x^{2}\right)x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Použite distributívny zákon na vynásobenie výrazov -x^{2}-4x-2 a -3x-7 a zlúčenie podobných členov.
\int 3x^{2}x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Vynásobením -3 a -1 získate 3.
\int 3x^{3}-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Ak chcete vynásobiť mocniny rovnakého mocnenca, sčítajte ich mocniteľov. Sčítaním čísel 2 a 1 dostanete 3.
\int 3x^{3}+7x^{2}+12x^{2}+34x+14\mathrm{d}x
Vynásobením -7 a -1 získate 7.
\int 3x^{3}+19x^{2}+34x+14\mathrm{d}x
Skombinovaním 7x^{2} a 12x^{2} získate 19x^{2}.
\int 3x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 34x\mathrm{d}x+\int 14\mathrm{d}x
Integrujte súčet podľa výrazov.
3\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{3x^{4}}{4}+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Vynásobte číslo 3 číslom \frac{x^{4}}{4}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Vynásobte číslo 19 číslom \frac{x^{3}}{3}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+\int 14\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}. Vynásobte číslo 34 číslom \frac{x^{2}}{2}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x
Nájdite integrál 14 pomocou tabuľky bežných integrály pravidiel \int a\mathrm{d}x=ax.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
Ak F\left(x\right) je neurčitý integrál f\left(x\right), a potom je množina všetkých antiderivatives f\left(x\right) F\left(x\right)+C. Preto pridajte konštanta integrácie C\in \mathrm{R} na výsledok.