Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\frac{\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-x^{3})-\left(x^{4}-x^{3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)}{\left(3x^{1}+1\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(3x^{1}+1\right)\left(4x^{4-1}+3\left(-1\right)x^{3-1}\right)-\left(x^{4}-x^{3}\right)\times 3x^{1-1}}{\left(3x^{1}+1\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(3x^{1}+1\right)\left(4x^{3}-3x^{2}\right)-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Zjednodušte.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Vynásobte číslo 3x^{1}+1 číslom 4x^{3}-3x^{2}.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}\times 3x^{0}-x^{3}\times 3x^{0}\right)}{\left(3x^{1}+1\right)^{2}}
Vynásobte číslo x^{4}-x^{3} číslom 3x^{0}.
\frac{3\times 4x^{1+3}+3\left(-3\right)x^{1+2}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{12x^{4}-9x^{3}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Zjednodušte.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x^{1}+1\right)^{2}}
Zlúčte podobné členy.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x+1\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.