Vyhodnotiť
\frac{x}{x+\sqrt{7}}
Derivovať podľa x
\frac{\sqrt{7}}{\left(x+\sqrt{7}\right)^{2}}
Graf
Zdieľať
Skopírované do schránky
\frac{x\left(x-\sqrt{7}\right)}{\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)}
Preveďte menovateľa \frac{x}{x+\sqrt{7}} na racionálne číslo vynásobením čitateľa a menovateľa číslom x-\sqrt{7}.
\frac{x\left(x-\sqrt{7}\right)}{x^{2}-\left(\sqrt{7}\right)^{2}}
Zvážte \left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\left(x-\sqrt{7}\right)}{x^{2}-7}
Druhá mocnina \sqrt{7} je 7.
\frac{x^{2}-x\sqrt{7}}{x^{2}-7}
Použite distributívny zákon na vynásobenie x a x-\sqrt{7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-\sqrt{7}\right)}{\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)})
Preveďte menovateľa \frac{x}{x+\sqrt{7}} na racionálne číslo vynásobením čitateľa a menovateľa číslom x-\sqrt{7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-\sqrt{7}\right)}{x^{2}-\left(\sqrt{7}\right)^{2}})
Zvážte \left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-\sqrt{7}\right)}{x^{2}-7})
Druhá mocnina \sqrt{7} je 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x\sqrt{7}}{x^{2}-7})
Použite distributívny zákon na vynásobenie x a x-\sqrt{7}.
\frac{\left(x^{2}-7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+\left(-\sqrt{7}\right)x^{1})-\left(x^{2}+\left(-\sqrt{7}\right)x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-7)}{\left(x^{2}-7\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{2}-7\right)\left(2x^{2-1}+\left(-\sqrt{7}\right)x^{1-1}\right)-\left(x^{2}+\left(-\sqrt{7}\right)x^{1}\right)\times 2x^{2-1}}{\left(x^{2}-7\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-7\right)\left(2x^{1}+\left(-\sqrt{7}\right)x^{0}\right)-\left(x^{2}+\left(-\sqrt{7}\right)x^{1}\right)\times 2x^{1}}{\left(x^{2}-7\right)^{2}}
Zjednodušte.
\frac{x^{2}\times 2x^{1}+x^{2}\left(-\sqrt{7}\right)x^{0}-7\times 2x^{1}-7\left(-\sqrt{7}\right)x^{0}-\left(x^{2}+\left(-\sqrt{7}\right)x^{1}\right)\times 2x^{1}}{\left(x^{2}-7\right)^{2}}
Vynásobte číslo x^{2}-7 číslom 2x^{1}+\left(-\sqrt{7}\right)x^{0}.
\frac{x^{2}\times 2x^{1}+x^{2}\left(-\sqrt{7}\right)x^{0}-7\times 2x^{1}-7\left(-\sqrt{7}\right)x^{0}-\left(x^{2}\times 2x^{1}+\left(-\sqrt{7}\right)x^{1}\times 2x^{1}\right)}{\left(x^{2}-7\right)^{2}}
Vynásobte číslo x^{2}+\left(-\sqrt{7}\right)x^{1} číslom 2x^{1}.
\frac{2x^{2+1}+\left(-\sqrt{7}\right)x^{2}-7\times 2x^{1}-7\left(-\sqrt{7}\right)x^{0}-\left(2x^{2+1}+\left(-\sqrt{7}\right)\times 2x^{1+1}\right)}{\left(x^{2}-7\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{2x^{3}+\left(-\sqrt{7}\right)x^{2}-14x^{1}+7\sqrt{7}x^{0}-\left(2x^{3}+\left(-2\sqrt{7}\right)x^{2}\right)}{\left(x^{2}-7\right)^{2}}
Zjednodušte.
\frac{\sqrt{7}x^{2}-14x^{1}+7\sqrt{7}x^{0}}{\left(x^{2}-7\right)^{2}}
Zlúčte podobné členy.
\frac{\sqrt{7}x^{2}-14x+7\sqrt{7}x^{0}}{\left(x^{2}-7\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{\sqrt{7}x^{2}-14x+7\sqrt{7}\times 1}{\left(x^{2}-7\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{\sqrt{7}x^{2}-14x+7\sqrt{7}}{\left(x^{2}-7\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}