Skočiť na hlavný obsah
Riešenie pre a
Tick mark Image
Riešenie pre h
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

76=a\left(15-h\right)^{3}+ak
Premenná a sa nemôže rovnať 0, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou a.
76=a\left(3375-675h+45h^{2}-h^{3}\right)+ak
Na rozloženie výrazu \left(15-h\right)^{3} použite binomickú vetu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}.
76=3375a-675ah+45ah^{2}-ah^{3}+ak
Použite distributívny zákon na vynásobenie a a 3375-675h+45h^{2}-h^{3}.
3375a-675ah+45ah^{2}-ah^{3}+ak=76
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
\left(3375-675h+45h^{2}-h^{3}+k\right)a=76
Skombinujte všetky členy obsahujúce a.
\left(3375+k-675h+45h^{2}-h^{3}\right)a=76
Rovnica je v štandardnom formáte.
\frac{\left(3375+k-675h+45h^{2}-h^{3}\right)a}{3375+k-675h+45h^{2}-h^{3}}=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Vydeľte obe strany hodnotou 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Delenie číslom 3375-675h+45h^{2}-h^{3}+k ruší násobenie číslom 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}\text{, }a\neq 0
Premenná a sa nemôže rovnať 0.