Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{2}{x-1}-\frac{x-1}{x-1}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 1 číslom \frac{x-1}{x-1}.
\frac{2-\left(x-1\right)}{x-1}
Keďže \frac{2}{x-1} a \frac{x-1}{x-1} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{2-x+1}{x-1}
Vynásobiť vo výraze 2-\left(x-1\right).
\frac{3-x}{x-1}
Zlúčte podobné členy vo výraze 2-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x-1}-\frac{x-1}{x-1})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 1 číslom \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-\left(x-1\right)}{x-1})
Keďže \frac{2}{x-1} a \frac{x-1}{x-1} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-x+1}{x-1})
Vynásobiť vo výraze 2-\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3-x}{x-1})
Zlúčte podobné členy vo výraze 2-x+1.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+3)-\left(-x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{1}-1\right)\left(-1\right)x^{1-1}-\left(-x^{1}+3\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(-1\right)x^{0}-\left(-x^{1}+3\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Počítajte.
\frac{x^{1}\left(-1\right)x^{0}-\left(-x^{0}\right)-\left(-x^{1}x^{0}+3x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Rozšírte s použitím distributívneho zákona.
\frac{-x^{1}-\left(-x^{0}\right)-\left(-x^{1}+3x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{-x^{1}+x^{0}-\left(-x^{1}+3x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Počítajte.
\frac{-x^{1}+x^{0}-\left(-x^{1}\right)-3x^{0}}{\left(x^{1}-1\right)^{2}}
Odstráňte nepotrebné zátvorky.
\frac{\left(-1-\left(-1\right)\right)x^{1}+\left(1-3\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Zlúčte podobné členy.
\frac{-2x^{0}}{\left(x^{1}-1\right)^{2}}
Odčítať -1 od -1 a 3 od 1.
\frac{-2x^{0}}{\left(x-1\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{-2}{\left(x-1\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.