Vyhodnotiť
6
Rozložiť na faktory
2\times 3
Zdieľať
Skopírované do schránky
\frac{3+2\sqrt{2}}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}+3-2\sqrt{2}
Preveďte menovateľa \frac{1}{3-2\sqrt{2}} na racionálne číslo vynásobením čitateľa a menovateľa číslom 3+2\sqrt{2}.
\frac{3+2\sqrt{2}}{3^{2}-\left(-2\sqrt{2}\right)^{2}}+3-2\sqrt{2}
Zvážte \left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3+2\sqrt{2}}{9-\left(-2\sqrt{2}\right)^{2}}+3-2\sqrt{2}
Vypočítajte 2 ako mocninu čísla 3 a dostanete 9.
\frac{3+2\sqrt{2}}{9-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}+3-2\sqrt{2}
Rozšírte exponent \left(-2\sqrt{2}\right)^{2}.
\frac{3+2\sqrt{2}}{9-4\left(\sqrt{2}\right)^{2}}+3-2\sqrt{2}
Vypočítajte 2 ako mocninu čísla -2 a dostanete 4.
\frac{3+2\sqrt{2}}{9-4\times 2}+3-2\sqrt{2}
Druhá mocnina \sqrt{2} je 2.
\frac{3+2\sqrt{2}}{9-8}+3-2\sqrt{2}
Vynásobením 4 a 2 získate 8.
\frac{3+2\sqrt{2}}{1}+3-2\sqrt{2}
Odčítajte 8 z 9 a dostanete 1.
3+2\sqrt{2}+3-2\sqrt{2}
Výsledkom delenia ľubovoľného čísla jednotkou je dané číslo.
6+2\sqrt{2}-2\sqrt{2}
Sčítaním 3 a 3 získate 6.
6
Skombinovaním 2\sqrt{2} a -2\sqrt{2} získate 0.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}