Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

15\left(253^{2}-x^{2}\right)=-30\times 155
Vynásobením \frac{1}{2} a 30 získate 15.
15\left(64009-x^{2}\right)=-30\times 155
Vypočítajte 2 ako mocninu čísla 253 a dostanete 64009.
960135-15x^{2}=-30\times 155
Použite distributívny zákon na vynásobenie 15 a 64009-x^{2}.
960135-15x^{2}=-4650
Vynásobením -30 a 155 získate -4650.
-15x^{2}=-4650-960135
Odčítajte 960135 z oboch strán.
-15x^{2}=-964785
Odčítajte 960135 z -4650 a dostanete -964785.
x^{2}=\frac{-964785}{-15}
Vydeľte obe strany hodnotou -15.
x^{2}=64319
Vydeľte číslo -964785 číslom -15 a dostanete 64319.
x=\sqrt{64319} x=-\sqrt{64319}
Vytvorte druhú odmocninu oboch strán rovnice.
15\left(253^{2}-x^{2}\right)=-30\times 155
Vynásobením \frac{1}{2} a 30 získate 15.
15\left(64009-x^{2}\right)=-30\times 155
Vypočítajte 2 ako mocninu čísla 253 a dostanete 64009.
960135-15x^{2}=-30\times 155
Použite distributívny zákon na vynásobenie 15 a 64009-x^{2}.
960135-15x^{2}=-4650
Vynásobením -30 a 155 získate -4650.
960135-15x^{2}+4650=0
Pridať položku 4650 na obidve snímky.
964785-15x^{2}=0
Sčítaním 960135 a 4650 získate 964785.
-15x^{2}+964785=0
Podobné kvadratické rovnice s členom x^{2}, no bez člena x sa dajú vyriešiť pomocou kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a}, keď sa zapíšu v štandardnom tvare: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte -15 za a, 0 za b a 964785 za c.
x=\frac{0±\sqrt{-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Umocnite číslo 0.
x=\frac{0±\sqrt{60\times 964785}}{2\left(-15\right)}
Vynásobte číslo -4 číslom -15.
x=\frac{0±\sqrt{57887100}}{2\left(-15\right)}
Vynásobte číslo 60 číslom 964785.
x=\frac{0±30\sqrt{64319}}{2\left(-15\right)}
Vypočítajte druhú odmocninu čísla 57887100.
x=\frac{0±30\sqrt{64319}}{-30}
Vynásobte číslo 2 číslom -15.
x=-\sqrt{64319}
Vyriešte rovnicu x=\frac{0±30\sqrt{64319}}{-30}, keď ± je plus.
x=\sqrt{64319}
Vyriešte rovnicu x=\frac{0±30\sqrt{64319}}{-30}, keď ± je mínus.
x=-\sqrt{64319} x=\sqrt{64319}
Teraz je rovnica vyriešená.