Riešenie pre x
x\geq \frac{9}{5}
Graf
Zdieľať
Skopírované do schránky
3\left(x-1\right)\leq 4\left(2x-3\right)
Vynásobte obe strany rovnice číslom 12, najmenším spoločným násobkom čísla 4,3. Keďže 12 je kladné, smer nerovnosť zostane rovnaký.
3x-3\leq 4\left(2x-3\right)
Použite distributívny zákon na vynásobenie 3 a x-1.
3x-3\leq 8x-12
Použite distributívny zákon na vynásobenie 4 a 2x-3.
3x-3-8x\leq -12
Odčítajte 8x z oboch strán.
-5x-3\leq -12
Skombinovaním 3x a -8x získate -5x.
-5x\leq -12+3
Pridať položku 3 na obidve snímky.
-5x\leq -9
Sčítaním -12 a 3 získate -9.
x\geq \frac{-9}{-5}
Vydeľte obe strany hodnotou -5. Vzhľadom na to, že hodnota -5 je záporná, smer znaku nerovnosti sa zmení.
x\geq \frac{9}{5}
Zlomok \frac{-9}{-5} možno zjednodušiť do podoby \frac{9}{5} odstránením záporného znamienka z čitateľa aj menovateľa.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}