Vyhodnotiť
\frac{x}{1-x^{3}}
Derivovať podľa x
\frac{2x^{3}+1}{\left(x^{3}-1\right)^{2}}
Graf
Zdieľať
Skopírované do schránky
\frac{x}{\left(x^{2}+x+1\right)\left(1-x\right)}
Vynásobiť číslo \frac{x}{x^{2}+x+1} číslom \frac{1}{1-x} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{x}{-x^{3}+1}
Použite distributívny zákon na vynásobenie výrazov x^{2}+x+1 a 1-x a zlúčenie podobných členov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x^{2}+x+1\right)\left(1-x\right)})
Vynásobiť číslo \frac{x}{x^{2}+x+1} číslom \frac{1}{1-x} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{-x^{3}+1})
Použite distributívny zákon na vynásobenie výrazov x^{2}+x+1 a 1-x a zlúčenie podobných členov.
\frac{\left(-x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{3}+1)}{\left(-x^{3}+1\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(-x^{3}+1\right)x^{1-1}-x^{1}\times 3\left(-1\right)x^{3-1}}{\left(-x^{3}+1\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(-x^{3}+1\right)x^{0}-x^{1}\left(-3\right)x^{2}}{\left(-x^{3}+1\right)^{2}}
Počítajte.
\frac{-x^{3}x^{0}+x^{0}-x^{1}\left(-3\right)x^{2}}{\left(-x^{3}+1\right)^{2}}
Rozšírte s použitím distributívneho zákona.
\frac{-x^{3}+x^{0}-\left(-3x^{1+2}\right)}{\left(-x^{3}+1\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{-x^{3}+x^{0}-\left(-3x^{3}\right)}{\left(-x^{3}+1\right)^{2}}
Počítajte.
\frac{\left(-1-\left(-3\right)\right)x^{3}+x^{0}}{\left(-x^{3}+1\right)^{2}}
Zlúčte podobné členy.
\frac{2x^{3}+x^{0}}{\left(-x^{3}+1\right)^{2}}
Odčítajte číslo -3 od čísla -1.
\frac{2x^{3}+1}{\left(-x^{3}+1\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}