Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x^{2}-5x+4=0
Premenná x sa nemôže rovnať -1, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou \left(x+1\right)^{2}.
a+b=-5 ab=4
Ak chcete vyriešiť rovnicu, faktor x^{2}-5x+4 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-4 -2,-2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
-1-4=-5 -2-2=-4
Vypočítajte súčet pre každý pár.
a=-4 b=-1
Riešenie je pár, ktorá poskytuje -5 súčtu.
\left(x-4\right)\left(x-1\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=4 x=1
Ak chcete nájsť riešenia rovníc, vyriešte x-4=0 a x-1=0.
x^{2}-5x+4=0
Premenná x sa nemôže rovnať -1, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou \left(x+1\right)^{2}.
a+b=-5 ab=1\times 4=4
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+4. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-4 -2,-2
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 4.
-1-4=-5 -2-2=-4
Vypočítajte súčet pre každý pár.
a=-4 b=-1
Riešenie je pár, ktorá poskytuje -5 súčtu.
\left(x^{2}-4x\right)+\left(-x+4\right)
Zapíšte x^{2}-5x+4 ako výraz \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
x na prvej skupine a -1 v druhá skupina.
\left(x-4\right)\left(x-1\right)
Vyberte spoločný člen x-4 pred zátvorku pomocou distributívneho zákona.
x=4 x=1
Ak chcete nájsť riešenia rovníc, vyriešte x-4=0 a x-1=0.
x^{2}-5x+4=0
Premenná x sa nemôže rovnať -1, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou \left(x+1\right)^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -5 za b a 4 za c.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Umocnite číslo -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Vynásobte číslo -4 číslom 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Prirátajte 25 ku -16.
x=\frac{-\left(-5\right)±3}{2}
Vypočítajte druhú odmocninu čísla 9.
x=\frac{5±3}{2}
Opak čísla -5 je 5.
x=\frac{8}{2}
Vyriešte rovnicu x=\frac{5±3}{2}, keď ± je plus. Prirátajte 5 ku 3.
x=4
Vydeľte číslo 8 číslom 2.
x=\frac{2}{2}
Vyriešte rovnicu x=\frac{5±3}{2}, keď ± je mínus. Odčítajte číslo 3 od čísla 5.
x=1
Vydeľte číslo 2 číslom 2.
x=4 x=1
Teraz je rovnica vyriešená.
x^{2}-5x+4=0
Premenná x sa nemôže rovnať -1, pretože delenie nulou nie je definované. Vynásobte obe strany rovnice premennou \left(x+1\right)^{2}.
x^{2}-5x=-4
Odčítajte 4 z oboch strán. Výsledkom odčítania čísla od nuly je jeho záporná hodnota.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Číslo -5, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{5}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{5}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Umocnite zlomok -\frac{5}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Prirátajte -4 ku \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Rozložte x^{2}-5x+\frac{25}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Zjednodušte.
x=4 x=1
Prirátajte \frac{5}{2} ku obom stranám rovnice.