Vyhodnotiť
\frac{ax}{\left(2x-1\right)\left(x+2\right)}
Derivovať podľa x
-\frac{2a\left(x^{2}+1\right)}{\left(\left(2x-1\right)\left(x+2\right)\right)^{2}}
Graf
Zdieľať
Skopírované do schránky
\frac{ax}{\left(x+2\right)\left(2x-1\right)}
Vynásobiť číslo \frac{a}{x+2} číslom \frac{x}{2x-1} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{ax}{2x^{2}-x+4x-2}
Použite distributívny zákon a vynásobte každý člen výrazu x+2 každým členom výrazu 2x-1.
\frac{ax}{2x^{2}+3x-2}
Skombinovaním -x a 4x získate 3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{\left(x+2\right)\left(2x-1\right)})
Vynásobiť číslo \frac{a}{x+2} číslom \frac{x}{2x-1} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}-x+4x-2})
Použite distributívny zákon a vynásobte každý člen výrazu x+2 každým členom výrazu 2x-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}+3x-2})
Skombinovaním -x a 4x získate 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(ax^{1})-ax^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{1-1}-ax^{1}\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Zjednodušte.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Vynásobte číslo 2x^{2}+3x^{1}-2 číslom ax^{0}.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-\left(ax^{1}\times 4x^{1}+ax^{1}\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Vynásobte číslo ax^{1} číslom 4x^{1}+3x^{0}.
\frac{2ax^{2}+3ax^{1}-2ax^{0}-\left(a\times 4x^{1+1}+a\times 3x^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{2ax^{2}+3ax^{1}+\left(-2a\right)x^{0}-\left(4ax^{2}+3ax^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Zjednodušte.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Zlúčte podobné členy.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)\times 1}{\left(2x^{2}+3x-2\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{\left(-2a\right)x^{2}-2a}{\left(2x^{2}+3x-2\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}