Vyhodnotiť
\frac{5\left(x-5y\right)}{2\left(3x-y\right)\left(3x-5y\right)}
Rozšíriť
-\frac{5\left(5y-x\right)}{2\left(y-3x\right)\left(5y-3x\right)}
Zdieľať
Skopírované do schránky
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Vydeľte číslo \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} zlomkom \frac{6x+10y}{5x-25y} tak, že číslo \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} vynásobíte prevrátenou hodnotou zlomku \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Rozložte výrazy, ktoré ešte nie sú rozložené na faktory, vo výraze \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Vykráťte \left(3x-5y\right)\left(3x+5y\right) v čitateľovi aj v menovateľovi.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Vynásobiť číslo \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} číslom \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Vykráťte 9x^{2}+15xy+25y^{2} v čitateľovi aj v menovateľovi.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Použite distributívny zákon na vynásobenie 5 a x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Použite distributívny zákon na vynásobenie 2 a 9x^{2}-18xy+5y^{2}.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Vydeľte číslo \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} zlomkom \frac{6x+10y}{5x-25y} tak, že číslo \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} vynásobíte prevrátenou hodnotou zlomku \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Rozložte výrazy, ktoré ešte nie sú rozložené na faktory, vo výraze \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Vykráťte \left(3x-5y\right)\left(3x+5y\right) v čitateľovi aj v menovateľovi.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Vynásobiť číslo \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} číslom \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} tak, že sa vynásobí čitateľ čitateľom a menovateľ menovateľom.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Vykráťte 9x^{2}+15xy+25y^{2} v čitateľovi aj v menovateľovi.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Použite distributívny zákon na vynásobenie 5 a x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Použite distributívny zákon na vynásobenie 2 a 9x^{2}-18xy+5y^{2}.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}