Vyhodnotiť
\frac{x+18}{\left(x-6\right)\left(x+2\right)}
Derivovať podľa x
\frac{60-36x-x^{2}}{x^{4}-8x^{3}-8x^{2}+96x+144}
Graf
Zdieľať
Skopírované do schránky
\frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel x-6 a x+2 je \left(x-6\right)\left(x+2\right). Vynásobte číslo \frac{3}{x-6} číslom \frac{x+2}{x+2}. Vynásobte číslo \frac{2}{x+2} číslom \frac{x-6}{x-6}.
\frac{3\left(x+2\right)-2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)}
Keďže \frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)} a \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{3x+6-2x+12}{\left(x-6\right)\left(x+2\right)}
Vynásobiť vo výraze 3\left(x+2\right)-2\left(x-6\right).
\frac{x+18}{\left(x-6\right)\left(x+2\right)}
Zlúčte podobné členy vo výraze 3x+6-2x+12.
\frac{x+18}{x^{2}-4x-12}
Rozšírte exponent \left(x-6\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel x-6 a x+2 je \left(x-6\right)\left(x+2\right). Vynásobte číslo \frac{3}{x-6} číslom \frac{x+2}{x+2}. Vynásobte číslo \frac{2}{x+2} číslom \frac{x-6}{x-6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)})
Keďže \frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)} a \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+12}{\left(x-6\right)\left(x+2\right)})
Vynásobiť vo výraze 3\left(x+2\right)-2\left(x-6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{\left(x-6\right)\left(x+2\right)})
Zlúčte podobné členy vo výraze 3x+6-2x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{x^{2}+2x-6x-12})
Použite distributívny zákon a vynásobte každý člen výrazu x-6 každým členom výrazu x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{x^{2}-4x-12})
Skombinovaním 2x a -6x získate -4x.
\frac{\left(x^{2}-4x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+18)-\left(x^{1}+18\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-12)}{\left(x^{2}-4x^{1}-12\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{2}-4x^{1}-12\right)x^{1-1}-\left(x^{1}+18\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-4x^{1}-12\right)x^{0}-\left(x^{1}+18\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Zjednodušte.
\frac{x^{2}x^{0}-4x^{1}x^{0}-12x^{0}-\left(x^{1}+18\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Vynásobte číslo x^{2}-4x^{1}-12 číslom x^{0}.
\frac{x^{2}x^{0}-4x^{1}x^{0}-12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\left(-4\right)x^{0}+18\times 2x^{1}+18\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Vynásobte číslo x^{1}+18 číslom 2x^{1}-4x^{0}.
\frac{x^{2}-4x^{1}-12x^{0}-\left(2x^{1+1}-4x^{1}+18\times 2x^{1}+18\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{x^{2}-4x^{1}-12x^{0}-\left(2x^{2}-4x^{1}+36x^{1}-72x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Zjednodušte.
\frac{-x^{2}-36x^{1}+60x^{0}}{\left(x^{2}-4x^{1}-12\right)^{2}}
Zlúčte podobné členy.
\frac{-x^{2}-36x+60x^{0}}{\left(x^{2}-4x-12\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{-x^{2}-36x+60\times 1}{\left(x^{2}-4x-12\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{-x^{2}-36x+60}{\left(x^{2}-4x-12\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}