Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa a
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\frac{3}{a+2}-\frac{4}{a-2}-\frac{2a}{5a+4}
Skombinovaním a a 4a získate 5a.
\frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel a+2 a a-2 je \left(a-2\right)\left(a+2\right). Vynásobte číslo \frac{3}{a+2} číslom \frac{a-2}{a-2}. Vynásobte číslo \frac{4}{a-2} číslom \frac{a+2}{a+2}.
\frac{3\left(a-2\right)-4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Keďže \frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} a \frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{3a-6-4a-8}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Vynásobiť vo výraze 3\left(a-2\right)-4\left(a+2\right).
\frac{-a-14}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Zlúčte podobné členy vo výraze 3a-6-4a-8.
\frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}-\frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel \left(a-2\right)\left(a+2\right) a 5a+4 je \left(a-2\right)\left(a+2\right)\left(5a+4\right). Vynásobte číslo \frac{-a-14}{\left(a-2\right)\left(a+2\right)} číslom \frac{5a+4}{5a+4}. Vynásobte číslo \frac{2a}{5a+4} číslom \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Keďže \frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} a \frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{-5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Vynásobiť vo výraze \left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right).
\frac{-5a^{2}-66a-56-2a^{3}}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Zlúčte podobné členy vo výraze -5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a.
\frac{-5a^{2}-66a-56-2a^{3}}{5a^{3}+4a^{2}-20a-16}
Rozšírte exponent \left(a-2\right)\left(a+2\right)\left(5a+4\right).