Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel x-5 a x+3 je \left(x-5\right)\left(x+3\right). Vynásobte číslo \frac{2}{x-5} číslom \frac{x+3}{x+3}. Vynásobte číslo \frac{5}{x+3} číslom \frac{x-5}{x-5}.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Keďže \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} a \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
Vynásobiť vo výraze 2\left(x+3\right)-5\left(x-5\right).
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
Zlúčte podobné členy vo výraze 2x+6-5x+25.
\frac{-3x+31}{x^{2}-2x-15}
Rozšírte exponent \left(x-5\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Najmenší spoločný násobok čísiel x-5 a x+3 je \left(x-5\right)\left(x+3\right). Vynásobte číslo \frac{2}{x-5} číslom \frac{x+3}{x+3}. Vynásobte číslo \frac{5}{x+3} číslom \frac{x-5}{x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Keďže \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} a \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
Vynásobiť vo výraze 2\left(x+3\right)-5\left(x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
Zlúčte podobné členy vo výraze 2x+6-5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
Použite distributívny zákon a vynásobte každý člen výrazu x-5 každým členom výrazu x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
Skombinovaním 3x a -5x získate -2x.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Zjednodušte.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Vynásobte číslo x^{2}-2x^{1}-15 číslom -3x^{0}.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Vynásobte číslo -3x^{1}+31 číslom 2x^{1}-2x^{0}.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Zjednodušte.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
Zlúčte podobné členy.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
Pre akýkoľvek člen t, t\times 1=t a 1t=t.