Riešenie pre x
x=0
z\neq 0\text{ or }y\neq 0
Riešenie pre u
u\in \mathrm{R}
\left(y\neq 0\text{ or }z\neq 0\right)\text{ and }x=0
Zdieľať
Skopírované do schránky
\left(y^{2}+z^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
Vynásobte obe strany rovnice premennou y^{2}+z^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
Použite distributívny zákon na vynásobenie y^{2}+z^{2} a \frac{\mathrm{d}}{\mathrm{d}y}(u).
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(\left(y^{2}\right)^{2}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
Na rozloženie výrazu \left(y^{2}+z^{2}\right)^{2} použite binomickú vetu \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+z^{4}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}
Použite distributívny zákon na vynásobenie -x a y^{4}+2y^{2}z^{2}+z^{4}.
\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Prehoďte strany tak, aby všetky premenné stáli na ľavej strane.
-xy^{4}-2xy^{2}z^{2}-xz^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Vynásobením 2 a -1 získate -2.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Skombinujte všetky členy obsahujúce x.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=0
Rovnica je v štandardnom formáte.
x=0
Vydeľte číslo 0 číslom -y^{4}-2y^{2}z^{2}-z^{4}.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}