[ x ^ { 2 } - 16 x + 63 = 0 ]
Riešenie pre x
x=7
x=9
Graf
Zdieľať
Skopírované do schránky
a+b=-16 ab=63
Ak chcete vyriešiť rovnicu, faktor x^{2}-16x+63 pomocou vzorca x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-63 -3,-21 -7,-9
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 63.
-1-63=-64 -3-21=-24 -7-9=-16
Vypočítajte súčet pre každý pár.
a=-9 b=-7
Riešenie je pár, ktorá poskytuje -16 súčtu.
\left(x-9\right)\left(x-7\right)
Prepíšte výraz \left(x+a\right)\left(x+b\right) rozložený na faktory pomocou získaných koreňov.
x=9 x=7
Ak chcete nájsť riešenia rovníc, vyriešte x-9=0 a x-7=0.
a+b=-16 ab=1\times 63=63
Ak chcete rovnicu vyriešiť, rozložte ľavú stranu na faktory pomocou zoskupenia. Najprv musí byť ľavá strana prepísaná v tvare x^{2}+ax+bx+63. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
-1,-63 -3,-21 -7,-9
Keďže ab je kladné, a a b majú rovnaký znak. Keďže a+b je záporná, a a b sú záporné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 63.
-1-63=-64 -3-21=-24 -7-9=-16
Vypočítajte súčet pre každý pár.
a=-9 b=-7
Riešenie je pár, ktorá poskytuje -16 súčtu.
\left(x^{2}-9x\right)+\left(-7x+63\right)
Zapíšte x^{2}-16x+63 ako výraz \left(x^{2}-9x\right)+\left(-7x+63\right).
x\left(x-9\right)-7\left(x-9\right)
x na prvej skupine a -7 v druhá skupina.
\left(x-9\right)\left(x-7\right)
Vyberte spoločný člen x-9 pred zátvorku pomocou distributívneho zákona.
x=9 x=7
Ak chcete nájsť riešenia rovníc, vyriešte x-9=0 a x-7=0.
x^{2}-16x+63=0
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 63}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -16 za b a 63 za c.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 63}}{2}
Umocnite číslo -16.
x=\frac{-\left(-16\right)±\sqrt{256-252}}{2}
Vynásobte číslo -4 číslom 63.
x=\frac{-\left(-16\right)±\sqrt{4}}{2}
Prirátajte 256 ku -252.
x=\frac{-\left(-16\right)±2}{2}
Vypočítajte druhú odmocninu čísla 4.
x=\frac{16±2}{2}
Opak čísla -16 je 16.
x=\frac{18}{2}
Vyriešte rovnicu x=\frac{16±2}{2}, keď ± je plus. Prirátajte 16 ku 2.
x=9
Vydeľte číslo 18 číslom 2.
x=\frac{14}{2}
Vyriešte rovnicu x=\frac{16±2}{2}, keď ± je mínus. Odčítajte číslo 2 od čísla 16.
x=7
Vydeľte číslo 14 číslom 2.
x=9 x=7
Teraz je rovnica vyriešená.
x^{2}-16x+63=0
Takéto kvadratické rovnice možno vyriešiť doplnením na druhú mocninu dvojčlena. Ak chcete rovnicu doplniť na druhú mocninu dvojčlena, musí byť najskôr v tvare x^{2}+bx=c.
x^{2}-16x+63-63=-63
Odčítajte hodnotu 63 od oboch strán rovnice.
x^{2}-16x=-63
Výsledkom odčítania čísla 63 od seba samého bude 0.
x^{2}-16x+\left(-8\right)^{2}=-63+\left(-8\right)^{2}
Číslo -16, koeficient člena x, vydeľte číslom 2 a získajte výsledok -8. Potom pridajte k obidvom stranám rovnice druhú mocninu -8. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-16x+64=-63+64
Umocnite číslo -8.
x^{2}-16x+64=1
Prirátajte -63 ku 64.
\left(x-8\right)^{2}=1
Rozložte x^{2}-16x+64 na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{1}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-8=1 x-8=-1
Zjednodušte.
x=9 x=7
Prirátajte 8 ku obom stranám rovnice.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}