Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozšíriť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Zvážte \left(2-a\right)\left(2+a\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocnite číslo 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Odčítajte 2 z 4 a dostanete 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Na rozloženie výrazu \left(2-a^{2}\right)^{3} použite binomickú vetu \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 3 dostanete 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Umocnite číslo 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete nájsť opačnú hodnotu k výrazu 4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1, nájdite opačnú hodnotu jednotlivých členov.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním 6a^{4} a -4a^{4} získate 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním -12a^{2} a -4a^{2} získate -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Odčítajte 1 z 8 a dostanete 7.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Na rozloženie výrazu \left(a^{2}+4\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Použite distributívny zákon na vynásobenie a^{2} a a^{4}+8a^{2}+16.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním -a^{6} a a^{6} získate 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním 2a^{4} a 8a^{4} získate 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
Skombinovaním -16a^{2} a 16a^{2} získate 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
Na rozloženie výrazu \left(b-2a^{2}\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
Skombinovaním -b^{2} a b^{2} získate 0.
7+10a^{4}+2b+4a^{4}
Skombinovaním 4ba^{2} a -4ba^{2} získate 0.
7+14a^{4}+2b
Skombinovaním 10a^{4} a 4a^{4} získate 14a^{4}.
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Zvážte \left(2-a\right)\left(2+a\right). Násobenie je možné vyjadriť rôznymi mocninami pomocou pravidla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Umocnite číslo 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Odčítajte 2 z 4 a dostanete 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Na rozloženie výrazu \left(2-a^{2}\right)^{3} použite binomickú vetu \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 3 dostanete 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Umocnite číslo 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Ak chcete nájsť opačnú hodnotu k výrazu 4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1, nájdite opačnú hodnotu jednotlivých členov.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním 6a^{4} a -4a^{4} získate 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním -12a^{2} a -4a^{2} získate -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Odčítajte 1 z 8 a dostanete 7.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Na rozloženie výrazu \left(a^{2}+4\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Použite distributívny zákon na vynásobenie a^{2} a a^{4}+8a^{2}+16.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním -a^{6} a a^{6} získate 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
Skombinovaním 2a^{4} a 8a^{4} získate 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
Skombinovaním -16a^{2} a 16a^{2} získate 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
Na rozloženie výrazu \left(b-2a^{2}\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
Skombinovaním -b^{2} a b^{2} získate 0.
7+10a^{4}+2b+4a^{4}
Skombinovaním 4ba^{2} a -4ba^{2} získate 0.
7+14a^{4}+2b
Skombinovaním 10a^{4} a 4a^{4} získate 14a^{4}.