[ \frac { x } { x + 1 } ) + 1
Vyhodnotiť
\frac{2x+1}{x+1}
Derivovať podľa x
\frac{1}{\left(x+1\right)^{2}}
Graf
Zdieľať
Skopírované do schránky
\frac{x}{x+1}+\frac{x+1}{x+1}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 1 číslom \frac{x+1}{x+1}.
\frac{x+x+1}{x+1}
Keďže \frac{x}{x+1} a \frac{x+1}{x+1} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{2x+1}{x+1}
Zlúčte podobné členy vo výraze x+x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x+1}+\frac{x+1}{x+1})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 1 číslom \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+x+1}{x+1})
Keďže \frac{x}{x+1} a \frac{x+1}{x+1} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+1}{x+1})
Zlúčte podobné členy vo výraze x+x+1.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)-\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+1\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Počítajte.
\frac{x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}x^{0}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Rozšírte s použitím distributívneho zákona.
\frac{2x^{1}+2x^{0}-\left(2x^{1}+x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{2x^{1}+2x^{0}-2x^{1}-x^{0}}{\left(x^{1}+1\right)^{2}}
Odstráňte nepotrebné zátvorky.
\frac{\left(2-2\right)x^{1}+\left(2-1\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Zlúčte podobné členy.
\frac{x^{0}}{\left(x^{1}+1\right)^{2}}
Odčítať 2 od 2 a 1 od 2.
\frac{x^{0}}{\left(x+1\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{1}{\left(x+1\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}