Vyhodnotiť
-92a
Rozšíriť
-92a
Zdieľať
Skopírované do schránky
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Ak chcete vynásobiť mocniny rovnakého mocnenca, sčítajte ich mocniteľov. Sčítaním čísel 2 a 1 dostanete 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získate b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získate b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením \frac{3}{28} a -\frac{7}{4} získate -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením -\frac{1}{8} a 2 získate -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Opak čísla -\frac{1}{4}a^{3}b^{2} je \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Skombinovaním -\frac{3}{16}a^{3}b^{2} a \frac{1}{4}a^{3}b^{2} získate \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením 368 a \frac{1}{16} získate 23.
\frac{23a}{-\frac{1}{4}}
Vykráťte a^{2}b^{2} v čitateľovi aj v menovateľovi.
\frac{23a\times 4}{-1}
Vydeľte číslo 23a zlomkom -\frac{1}{4} tak, že číslo 23a vynásobíte prevrátenou hodnotou zlomku -\frac{1}{4}.
\frac{92a}{-1}
Vynásobením 23 a 4 získate 92.
-92a
Vydelením čísla -1 dostaneme opačné číslo.
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Ak chcete vynásobiť mocniny rovnakého mocnenca, sčítajte ich mocniteľov. Sčítaním čísel 2 a 1 dostanete 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získate b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením b a b získate b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením \frac{3}{28} a -\frac{7}{4} získate -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením -\frac{1}{8} a 2 získate -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Opak čísla -\frac{1}{4}a^{3}b^{2} je \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Skombinovaním -\frac{3}{16}a^{3}b^{2} a \frac{1}{4}a^{3}b^{2} získate \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Vynásobením 368 a \frac{1}{16} získate 23.
\frac{23a}{-\frac{1}{4}}
Vykráťte a^{2}b^{2} v čitateľovi aj v menovateľovi.
\frac{23a\times 4}{-1}
Vydeľte číslo 23a zlomkom -\frac{1}{4} tak, že číslo 23a vynásobíte prevrátenou hodnotou zlomku -\frac{1}{4}.
\frac{92a}{-1}
Vynásobením 23 a 4 získate 92.
-92a
Vydelením čísla -1 dostaneme opačné číslo.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}