Direct la conținutul principal
Microsoft
|
Math Solver
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Bază
algebra
Trigonometrie
Calcul
statistici
matrici
Caractere
mode(2,4,5,3,2,4,5,6,4,3,2)
Evaluați
2,4
Test
mode(2,4,5,3,2,4,5,6,4,3,2)
Probleme similare din căutarea web
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Mai multe Elemente
Partajați
Copiați
Copiat în clipboard
Probleme similare
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Revenire la început