Pular para o conteúdo principal
Microsoft
|
Math Solver
Solucionar
Praticar
Brincar
Tópicos
Pré-Álgebra
Significar
Modo
Maior Fator Comum
Mínimo Múltiplo Comum
Ordem de Operações
Frações
Frações Mistas
Fatoração Primária
Expoentes
Radicais
Álgebra
Combinar Termos Semelhantes
Resolva para uma variável
Fator
Expandir
Avalie as frações
Equações Lineares
Equações Quadráticas
Desigualdades
Sistemas de Equações
Matrizes
Trigonometria
Simplificar
Avalie
Gráficos
Resolva Equações
Cálculo
Derivados
Integrais
Limites
Entradas de Álgebra
Entradas de trigonometria
Entradas de cálculo
Entradas matriciais
Solucionar
Praticar
Brincar
Tópicos
Pré-Álgebra
Significar
Modo
Maior Fator Comum
Mínimo Múltiplo Comum
Ordem de Operações
Frações
Frações Mistas
Fatoração Primária
Expoentes
Radicais
Álgebra
Combinar Termos Semelhantes
Resolva para uma variável
Fator
Expandir
Avalie as frações
Equações Lineares
Equações Quadráticas
Desigualdades
Sistemas de Equações
Matrizes
Trigonometria
Simplificar
Avalie
Gráficos
Resolva Equações
Cálculo
Derivados
Integrais
Limites
Entradas de Álgebra
Entradas de trigonometria
Entradas de cálculo
Entradas matriciais
Básico
álgebra
trigonometria
cálculo
estatísticas
matrizes
Caracteres
Avaliar
\infty
Teste
Limits
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Problemas Semelhantes da Pesquisa na Web
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Mais Itens
Compartilhar
Copiar
Copiado para a área de transferência
Problemas Semelhantes
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Voltar ao topo