Resolva para z
z=\frac{1}{25}-\frac{18}{25}i=0,04-0,72i
Atribuir z
z≔\frac{1}{25}-\frac{18}{25}i
Compartilhar
Copiado para a área de transferência
z=\frac{3-2i}{3+4i}
Calcule 2+i elevado a 2 e obtenha 3+4i.
z=\frac{\left(3-2i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiplique o numerador e o denominador de \frac{3-2i}{3+4i} pelo conjugado complexo do denominador, 3-4i.
z=\frac{1-18i}{25}
Efetue as multiplicações em \frac{\left(3-2i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}.
z=\frac{1}{25}-\frac{18}{25}i
Dividir 1-18i por 25 para obter \frac{1}{25}-\frac{18}{25}i.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}