Pular para o conteúdo principal
Avaliar
Tick mark Image
Calcular a diferenciação com respeito a x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique x^{3} vezes \frac{x+3}{x+3}.
\frac{x^{3}\left(x+3\right)+1}{x+3}
Uma vez que \frac{x^{3}\left(x+3\right)}{x+3} e \frac{1}{x+3} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{x^{4}+3x^{3}+1}{x+3}
Efetue as multiplicações em x^{3}\left(x+3\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3})
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique x^{3} vezes \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)+1}{x+3})
Uma vez que \frac{x^{3}\left(x+3\right)}{x+3} e \frac{1}{x+3} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+3x^{3}+1}{x+3})
Efetue as multiplicações em x^{3}\left(x+3\right)+1.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+3x^{3}+1)-\left(x^{4}+3x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Para quaisquer duas funções diferenciáveis, a derivada do quociente de duas funções é igual ao denominador vezes a derivada do numerador menos o numerador vezes a derivada do denominador, todos divididos pelo denominador ao quadrado.
\frac{\left(x^{1}+3\right)\left(4x^{4-1}+3\times 3x^{3-1}\right)-\left(x^{4}+3x^{3}+1\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
A derivada de um polinómio é a soma das derivadas dos seus termos. A derivada de qualquer termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
\frac{\left(x^{1}+3\right)\left(4x^{3}+9x^{2}\right)-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Simplifique.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Multiplique x^{1}+3 vezes 4x^{3}+9x^{2}.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}x^{0}+3x^{3}x^{0}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Multiplique x^{4}+3x^{3}+1 vezes x^{0}.
\frac{4x^{1+3}+9x^{1+2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Para multiplicar potências com a mesma base, some os exponentes.
\frac{4x^{4}+9x^{3}+12x^{3}+27x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Simplifique.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x^{1}+3\right)^{2}}
Combine termos semelhantes.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x+3\right)^{2}}
Para qualquer termo t, t^{1}=t.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
Para qualquer termo t , exceto 0, t^{0}=1.